Тепловой расчт системы отопления правила расчета тепловой нагрузки

Лекция №17

Расчет квт для отопления подразумевает выполнение специальных вычислений, порядок которых регламентирован особыми нормативными актами. Ответственность за них лежит на коммунальных организациях, которые способны помочь при выполнении данной работы и дать ответ касательно того, как рассчитать гкал на отопление и расшифровка гкал.

Безусловно, подобная проблема будет полностью исключена в случае наличия в жилом помещении счетчика на горячую воду, так как именно в этом приборе имеются уже заранее выставленные показания, отображающие полученное тепло. Умножив эти результаты на установленный тариф, модно получить конечный параметр расходуемого тепла.

https://www.youtube.com/watch?v=0N2PpGgqh4A

Основой для определения тепловой нагрузки систем отопления является процедура проведения теплотехнического расчета конструкций здания с учетом всех конструктивных особенностей используемых строительных материалов и их теплоизоляционных свойств. В расчетах также учитывается ориентация здания по сторонам света, наличие естественной или механической систем вентиляции и многие другие факторы теплового баланса помещений.

  1. Расчет потерь тепла по площади помещений.
  2. Определение величины теплопотерь исходя из наружного объема здания.
  3. Точный теплотехнический расчет всех конструкций жилого дома с учетом теплофизических коэффициентов материалов.

Первым методом расчета тепловой нагрузки системы отопления пользуются для укрупненного определения мощности системы отопления всего дома и общего понимания количества и типа радиаторов, а также мощности котельного оборудования. Так как метод не учитывает регион строительства (расчетную наружную температуру зимой), количество потерь тепла через фундаменты, крыши или нестандартное остекление, то количество потерь тепла, рассчитанное укрупненным методом исходя из площади помещения, может быть как больше, так и меньше фактических значений.

Источники теплопотерь здания

А при использовании современных теплоизоляционных материалов мощность котельного оборудования может быть определена с большим запасом. Таким образом, при устройстве систем отопления возникнет большой перерасход материалов и будет приобретено более дорогостоящее оборудование. Поддержание комфортной температуры в помещениях будет возможно только при условии, что будет установлена современная автоматика, которая не допустит перегрева помещений выше комфортных температур.

В худшем случае, мощность системы отопления может быть занижена и дом в самые холодные дни не будет прогрет.

Тем не менее, этим способом определения мощности систем отопления пользуются достаточно часто. Следует только понимать, в каких случаях такие укрупненные расчеты приближены к реальности.

При использовании первого метода для укрупненного метода расчета тепловой мощности следует ориентироваться на следующие рекомендации:

  • В случае, когда в расчетном помещении из наружных ограждающих конструкций имеются одно окно и одна наружная стена, а высота потолков менее трех метров, то на 1м2 отапливаемой площади приходится 100 Вт тепловой энергии.
  • При расчете углового помещения с двумя оконными конструкциями или балконными блоками либо помещение высотой более трех метров, то в диапазон удельной тепловой энергии на 1 м2 составляет от 120 до 150 Вт.
  • Если же прибор отопления в будущем планируется устанавливать под окном в нише либо декорировать защитными экранами, поверхность радиаторов и, следовательно, их мощность необходимо увеличить на 20-30%. Это обусловлено тем, что тепловая мощность радиаторов будет частично тратиться на прогрев дополнительных конструкций.

Этот метод определения тепловой нагрузки на системы отопления наименее универсален, чем первый, так как предназначен для расчетов помещений с высокими потолками, но при этом не учитывает, что воздух под потолком всегда теплее, чем в нижней части комнаты и, следовательно, количество потерь тепла будет различаться зонально.

При использовании первого или второго метода расчета теплопотерь здания укрупненным методом можно пользоваться поправочными коэффициентами, которые в некоторой степени отражают реальность и зависимость потерь тепла зданием в зависимости от различных факторов.

  1. Тип остекления:
  • тройной пакет 0,85,
  • двойной 1,0,
  • двойной переплет 1,27.
  1. Наличие окон и входных дверей увеличивает величину потерь тепла дома на 100 и 200 Ватт соответственно.
  2. Теплоизоляционные характеристики наружных стен и их воздухопроницаемость:
  • современные теплоизоляционные материалы 0,85
  • стандарт (два кирпича и утеплитель) 1,0,
  • низкие теплоизоляционные свойства или незначительная толщина стен 1,27-1,35.
  1. Процентное отношение площади окон к площади помещения: 10%-0,8, 20%—0,9, 30%—1,0, 40%—1,1, 50%—1,2.
  2. Расчет для индивидуального жилого дома должен производиться с поправочным коэффициентом порядка 1,5 в зависимости от типа и характеристик используемых конструкций пола и кровли.
  3. Расчетная температура наружного воздуха в зимний период (для каждого региона своя, определяется нормативами): -10 градусов 0,7, -15 градусов 0,9, -20 градусов 1,10, -25 градусов 1,30, -35 градусов 1,5.
  4. Тепловые потери так же растут в зависимости от увеличения количества наружных стен по следующей зависимости: одна стена – плюс 10% от тепловой мощности.

Но, тем не менее, определить какой метод даст точный и действительно верный результат тепловой мощности отопительного оборудования можно лишь после выполнения точного и полного теплотехнического расчета здания.

Приведенные выше методики укрупненных расчетов больше всего ориентированы на продавцов или покупателей радиаторов систем отопления, устанавливаемых в типовых многоэтажных жилых домах. Но когда речь идет о подборе дорогостоящего котельного оборудования, о планировании системы отопления загородного дома, в котором кроме радиаторов будут установлены системы напольного отопления, горячего водоснабжения и вентиляции, пользоваться этими методиками крайне не рекомендуется.

Каждый владелец индивидуального жилого дома или коттеджа еще на стадии строительства достаточно скрупулезно подходит к разработке строительной документации, в которой учитываются все современные тенденции использования строительных материалов и конструкций дома. Они обязательно должны не быть типовыми или морально устаревшими, а изготовлены с учетом современных энергоэффективных технологий.

Тепловой расчт системы отопления правила расчета тепловой нагрузки

Расчет теплопотерь выполняется в специализированных программах либо с использованием основных формул и коэффициентов теплопроводности конструкций, учитывается влияние инфильтрации воздуха, наличие или отсутствие систем вентиляции в здании. Расчет заглубленных цокольных помещений, а также крайних этажей производится по отличной от основных расчетов методике, которая учитывает неравномерность остывания горизонтальных конструкций, то есть потери тепла через крышу и пол. Выше приведенные методики этот показатель не учитывают.

Теплотехнический расчет выполняется, как правило, квалифицированными специалистами в составе проекта на систему отопления в результате которого производится дальнейший расчет количества и мощность приборов отопления, мощность отдельного оборудования, подбор насосов и другого сопутствующего оборудования.

В качестве наглядного примера выполним расчет теплопотерь в специализированной программе для трех домов, построенных по одной технологии, но с различной толщиной теплоизоляции наружных стен: 100 мм, 150 мм и 200 мм. Расчет ведется для угловой жилой комнаты с одним окном, площадью 8,12 м?. Регион строительства Московская область.

Исходные данные:

  • Помещение с обмером по наружным габаритам 3000х3000;
  • Окно размерами 1200х1000.

Целью расчета является определение удельной мощности системы отопления, необходимой для нагрева 1м?.

Результат:

  • Qуд при т/изоляции 100 мм составляет 103 Вт/м?
  • Qуд при т/изоляции 150 мм составляет 81 Вт/м?
  • Qуд при т/изоляции 200 мм составляет 70 Вт/м?

Как видно из расчета, наибольшие потери тепла составляют для жилого дома с наименьшей толщиной изоляции, следовательно, мощность котельного оборудования и радиаторов будет выше на 47% чем при строительстве дома с теплоизоляцией в 200 мм.

Все здания в особенности жилые имеют свойство «дышать», то есть проветриваться различными способами. Это обусловлено созданием разряженного воздуха в помещениях за счет устройства вытяжных каналов в конструкциях дома либо дымоходов. Как известно, вентиляционные каналы создаются в зонах с повышенными выделениями загрязнений, таких как, кухни, ванные комнаты и санузлы.

Таким образом, при работе системы вентиляции или при проветривании соблюдается главное правило создания благоприятной среды воздуха в жилых зданиях: направление движения свежего воздуха должно быть организовано из помещений с постоянным пребыванием людей в направлении помещений с максимальным уровнем загрязнения.

То есть при правильном воздухообмене приточный воздух поступает в помещение через окно, вентиляционный клапан или приточную решетку и удаляется в кухнях и санузлах.

При расчете теплопотерь знания имеет принципиальное значение, какой способ вентиляции жилых помещений будет выбран:

  • Устройство механической вентиляции с подогревом приточного воздуха.
  • Инфильтрация — неорганизованный воздухообмен через неплотности в стенах, при открывании окон или при использовании заранее установленных воздушных клапанов в конструкции стен или оконных стеклопакетах.

В случае применения в жилом здании сбалансированной системы вентиляции (когда объем приточного воздуха больше или равен вытяжному, то есть исключаются любые прорывания холодного воздуха в жилые помещения) воздух, поступающий в жилые помещения, предварительно прогревается в вентиляционной установке. При этом мощность, необходимая для нагрева вентиляции, учитывается в расчете мощности котельного оборудования.

Общие сведения о вентиляторах

При проектировании системы отопления, будь то промышленное строение или жилое здание, нужно провести грамотные расчеты и составить схему контура отопительной системы. Особое внимание на этом этапе специалисты рекомендуют обращать на расчёт возможной тепловой нагрузки на отопительный контур, а также на объем потребляемого топлива и выделяемого тепла.

Тепловая нагрузка: что это?

Под этим термином понимают количество отдаваемой приборами отопления теплоты. Проведенный предварительный расчет тепловой нагрузки позволить избежать ненужных расходов на приобретение составляющих отопительной системы и на их установку. Также этот расчет поможет правильно распределить количество выделяемого тепла экономно и равномерно по всему зданию.

Тепловой расчт системы отопления правила расчета тепловой нагрузки

В эти расчеты заложено множество нюансов. Например, материал, из которого выстроено здание, теплоизоляция, регион и пр. Специалисты стараются принять во внимание как можно больше факторов и характеристик для получения более точного результата.

Расчет тепловой нагрузки с ошибками и неточностями приводит к неэффективной работе отопительной системы. Случается даже, что приходится переделывать участки уже работающей конструкции, что неизбежно влечет к незапланированным тратам. Да и жилищно-коммунальные организации ведут расчет стоимости услуг на базе данных о тепловой нагрузке.

Основные факторы

— Назначение здания: жилое или промышленное.

— Характеристику конструктивных элементов строения. Это окна, стены, двери, крыша и вентиляционная система.

— Размеры жилища. Чем оно больше, тем мощнее должна быть система отопления. Обязательно нужно учитывать площадь оконных проемов, дверей, наружных стен и объем каждого внутреннего помещения.

— Наличие комнат специального назначения (баня, сауна и пр.).

— Степень оснащения техническими приборами. То есть, наличие горячего водоснабжения, системы вентиляции, кондиционирование и тип отопительной системы.

— Температурный режим для отдельно взятого помещения. Например, в комнатах, предназначенных для хранения, не нужно поддерживать комфортную для человека температуру.

Тепловой расчт системы отопления правила расчета тепловой нагрузки

— Количество точек с подачей горячей воды. Чем их больше, тем сильнее нагружается система.

— Площадь остекленных поверхностей. Комнаты с французскими окнами теряют значительное количество тепла.

— Дополнительные условия. В жилых зданиях это может быть количество комнат, балконов и лоджий и санузлов. В промышленных – количество рабочих дней в календарном году, смен, технологическая цепочка производственного процесса и пр.

https://www.youtube.com/watch?v=cxAkNRMC8KQ

— Климатические условия региона. При расчёте теплопотерь учитываются уличные температуры. Если перепады незначительны, то и на компенсацию будет уходить малое количество энергии. В то время как при -40оС за окном потребует значительных ее расходов.

Особенности существующих методик

— расход тепла, взятый по максимуму за один час работы системы отопления,

— максимальный поток тепла, исходящий от одного радиатора,

— общие затраты тепла в определенный период (чаще всего – сезон); если необходим почасовой расчет нагрузки на тепловую сеть, то расчет нужно вести с учетом перепада температур в течение суток.

Тепловой расчт системы отопления правила расчета тепловой нагрузки

Произведенные расчеты сопоставляют с площадью тепловой отдачи всей системы. Показатель получается достаточно точный. Некоторые отклонения случаются. Например, для промышленных строений нужно будет учитывать снижение потребления тепловой энергии в выходные дни и праздничные, а в жилых помещениях – в ночное время.

Методики для расчета систем отопления имеют несколько степеней точности. Для сведения погрешности к минимуму необходимо использовать довольно сложные вычисления. Менее точные схемы применяются если не стоит цель оптимизировать затраты на отопительную систему.

Основные способы расчета

На сегодняшний день расчет тепловой нагрузки на отопление здания можно провести одним из следующих способов.

Три основных

  • Для расчета берутся укрупненные показатели.
  • За базу принимаются показатели конструктивных элементов здания. Здесь будет важен и расчет потерь тепла, идущего на прогрев внутреннего объема воздуха.
  • Рассчитываются и суммируются все входящие в систему отопления объекты.

Один примерный

Есть и четвертый вариант. Он имеет достаточно большую погрешность, ибо показатели берутся очень усредненные, или их недостаточно. Вот эта формула — Qот = q0 * a * VH * (tЕН – tНРО), где:

  • q0 – удельная тепловая характеристика здания (чаще всего определяется по самому холодному периоду),
  • a – поправочный коэффициент (зависит от региона и берется из готовых таблиц),
  • VH – объем, рассчитанный по внешним плоскостям.

Пример простого расчета

Для строения со стандартными параметрами (высотой потолков, размерами комнат и хорошими теплоизоляционными характеристиками) можно применить простое соотношение параметров с поправкой на коэффициент, зависящий от региона.

Предположим, что жилой дом находится в Архангельской области, а его площадь — 170 кв. м. Тепловая нагрузка будет равна 17 * 1,6 = 27,2 кВт/ч.

Подобное определение тепловых нагрузок не учитывает многих важных факторов. Например, конструктивных особенностей строения, температуры, число стен, соотношение площадей стен и оконных проёмов и пр. Поэтому подобные расчеты не подходят для серьёзных проектов системы отопления.

Расчет радиатора отопления по площади

Зависит он от материала, из которого они изготовлены. Чаще всего сегодня используются биметаллические, алюминиевые, стальные, значительно реже чугунные радиаторы. Каждый из них имеет свой показатель теплоотдачи (тепловой мощности). Биметаллические радиаторы при расстоянии между осями в 500 мм, в среднем имеют 180 — 190 Вт. Радиаторы из алюминия имеют практически такие же показатели.

Теплоотдача описанных радиаторов рассчитывается на одну секцию. Радиаторы стальные пластинчатые являются неразборными. Поэтому их теплоотдача определяется исходя из размера всего устройства. Например, тепловая мощность двухрядного радиатора шириной 1 100 мм и высотой 200 мм будет 1 010 Вт, а панельного радиатора из стали шириной 500 мм, а высотой 220 мм составит 1 644 Вт.

— высота потолков (стандартная – 2,7 м),

— тепловая мощность (на кв. м – 100 Вт),

— одна внешняя стена.

Эти расчеты показывают, что на каждые 10 кв. м необходимо 1 000 Вт тепловой мощности. Этот результат делится на тепловую отдачу одной секции. Ответом является необходимое количество секций радиатора.

Для южных районов нашей страны, так же как и для северных, разработаны понижающие и повышающие коэффициенты.

Усредненный расчет и точный

Учитывая описанные факторы, усредненный расчет проводится по следующей схеме. Если на 1 кв. м требуется 100 Вт теплового потока, то помещение в 20 кв. м должно получать 2 000 Вт. Радиатор (популярный биметаллический или алюминиевый) из восьми секций выделяет около 150 Вт. Делим 2 000 на 150, получаем 13 секций. Но это довольно укрупненный расчет тепловой нагрузки.

Qт = 100 Вт/м2 × S(помещения)м2 × q1 × q2 × q3 × q4 × q5 × q6× q7, где:

  • q1 – тип остекления (обычное =1.27, двойное = 1.0, тройное = 0.85);
  • q2 – стеновая изоляция (слабая, или отсутствующая = 1.27, стена выложенная в 2 кирпича = 1.0, современна, высокая = 0.85);
  • q3 – соотношение суммарной площади оконных проемов к площади пола (40% = 1.2, 30% = 1.1, 20% — 0.9, 10% = 0.8);
  • q4 – уличная температура (берется минимальное значение: -35оС = 1.5, -25оС = 1.3, -20оС = 1.1, -15оС = 0.9, -10оС = 0.7);
  • q5 – число наружных стен в комнате (все четыре = 1.4, три = 1.3, угловая комната = 1.2, одна = 1.2);
  • q6 – тип расчетного помещения над расчетной комнатой (холодное чердачное = 1.0, теплое чердачное = 0.9, жилое отапливаемое помещение = 0.8);
  • q7 – высота потолков (4.5 м = 1.2, 4.0 м = 1.15, 3.5 м = 1.1, 3.0 м = 1.05, 2.5 м = 1.3).

По любому из описанных методов можно провести расчет тепловой нагрузки многоквартирного дома.

Примерный расчет

Q = 100 Вт/м2 × 25 м2 × 0,85 × 1 × 0,8(12%) × 1,1 × 1,2 × 1 × 1,05.

Результат, 2 356.20, делим на 150. В итоге получается, что в комнате с указанными параметрами нужно установить 16 секций.

Если необходим расчет в гигакалориях

В случае отсутствия счетчика тепловой энергии на открытом отопительном контуре расчет тепловой нагрузки на отопление здания рассчитывают по формуле Q = V * (Т1 — Т2) / 1000, где:

  • V – количество воды, потребляемой системой отопления, исчисляется тоннами или м3,
  • Т1 – число, показывающее температуру горячей воды, измеряется в оС и для вычислений берется температура, соответствующая определенному давлению в системе. Показатель этот имеет свое название – энтальпия. Если практическим путем снять температурные показатели нет возможности, прибегают к усредненному показателю. Он находится в пределах 60-65оС.
  • Т2 – температура холодной воды. Ее измерить в системе довольно трудно, поэтому разработаны постоянные показатели, зависящие от температурного режима на улице. К примеру, в одном из регионов, в холодное время года этот показатель принимается равным 5, летом – 15.
  • 1 000 – коэффициент для получения результата сразу в гигакалориях.
Читать далее:  Эжектор для насосной станции - сборка и установка своими руками

Qот = α * qо * V * (tв — tн.р) * (1 Kн.р) * 0,000001, где

  • α – коэффициент, призванный корректировать климатические условия. Берется в расчет, если уличная температура отличается от -30оС;
  • V – объем строения по наружным замерам;
  • qо – удельный отопительный показатель строения при заданной tн.р = -30оС, измеряется в ккал/м3*С;
  • tв – расчетная внутренняя температура в здании;
  • tн.р – расчетная уличная температура для составления проекта системы отопления;
  • Kн.р – коэффициент инфильтрации. Обусловлен соотношением тепловых потерь расчетного здания с инфильтрацией и теплопередачей через внешние конструктивные элементы при уличной температуре, которая задана в рамках составляемого проекта.
  • нагрузку на конструкцию теплоснабжения;
  • нагрузку на систему обогрева пола, если она планируется к установке в доме;
  • нагрузку на систему естественной и/или принудительной вентиляции;
  • нагрузку на систему горячего водоснабжения;
  • нагрузку, связанную с различными технологическими нуждами.

Определение расчетных часовых нагрузок отопления, приточной вентиляции и горячего водоснабжения расчетные тепловые нагрузки

1. Отопление

1.1. Расчетную часовую тепловую нагрузку отопления следует принимать по типовым или индивидуальным проектам зданий.

, (3.1)

где Qo max — расчетная часовая тепловая нагрузка отопления здания, Гкал/ч;

Qo max пр — то же, по типовому или индивидуальному проекту, Гкал/ч;

tj — расчетная температура воздуха в отапливаемом здании, °С; принимается в соответствии с таблицей 1;

to — расчетная температура наружного воздуха для проектирования отопления в местности, где расположено здание, согласно СНиП 23-01-99 [1], °С;

to.пр — то же, по типовому или индивидуальному проекту, °С.

Таблица 1. Расчетная температура воздуха в отапливаемых зданиях

Наименование здания

Расчетная температура воздуха в здании tj, °С

Жилое здание

18

Гостиница, общежитие, административное здание

18-20

Детский сад, ясли, поликлиника, амбулатория, диспансер, больница

20

Высшее, среднее специальное учебное заведение, школа, школа-интернат, предприятие общественного питания, клуб

16

Театр, магазин, пожарное депо

15

Кинотеатр

14

Гараж

10

Баня

25

В местностях с расчетной температурой наружного воздуха для проектирования отопления -31 °С и ниже значение расчетной температуры воздуха внутри отапливаемых жилых зданий следует принимать в соответствии с главой СНиП 2.08.01-85 [9] равным 20 °С.

Расчет тепловой нагрузки

, (3.2)

где  — поправочный коэффициент, учитывающий отличие расчетной температуры наружного воздуха для проектирования отопления to от to = -30 °С, при которой определено соответствующее значение qo; принимается по таблице 2;

V — объем здания по наружному обмеру, м3;

qo — удельная отопительная характеристика здания при to = -30 °С, ккал/м3 ч°С; принимается по таблицам 3 и 4;

Kи.р — расчетный коэффициент инфильтрации, обусловленной тепловым и ветровым напором, т.е. соотношение тепловых потерь зданием с инфильтрацией и теплопередачей через наружные ограждения при температуре наружного воздуха, расчетной для проектирования отопления.

Таблица 2. Поправочный коэффициент  для жилых зданий

Расчетная температура наружного воздуха to, °C

±0

-5

-10

-15

-20

-25

-30

-35

-40

-45

-50

-55

2,05

1,67

1,45

1,29

1,17

1,08

1,00

0,95

0,9

0,85

0,82

0,8

Таблица 3. Удельная отопительная характеристика жилых зданий

1100

Наружный строительный объем V, м3

Удельная отопительная характеристика qo, ккал/м3 ч °С

постройка до 1958 г.

постройка после 1958 г.

1

2

3

100

0,74

0,92

200

0,66

0,82

300

0,62

0,78

400

0,60

0,74

500

0,58

0,71

600

0,56

0,69

700

0,54

0,68

800

0,53

0,67

900

0,52

0,66

1000

0,51

0,65

0,50

0,62

1200

0,49

0,60

1300

0,48

0,59

1400

0,47

0,58

1500

0,47

0,57

1700

0,46

0,55

2000

0,45

0,53

2500

0,44

0,52

3000

0,43

0,50

3500

0,42

0,48

4000

0,40

0,47

4500

0,39

0,46

5000

0,38

0,45

6000

0,37

0,43

7000

0,36

0,42

8000

0,35

0,41

9000

0,34

0,40

10000

0,33

0,39

11000

0,32

0,38

12000

0,31

0,38

13000

0,30

0,37

14000

0,30

0,37

15000

0,29

0,37

20000

0,28

0,37

25000

0,28

0,37

30000

0,28

0,36

35000

0,28

0,35

40000

0,27

0,35

45000

0,27

0,34

50000

0,26

0,34

Таблица 3а. Удельная отопительная характеристика зданий, построенных до 1930 г.

Объем здания по наружному обмеру, м3

Удельная отопительная характеристика здания, ккал/м3 ч °С, для районов с расчетной температурой наружного воздуха для проектирования отопления to, °C

to {amp}lt; -30 °С

-20 °С {amp}gt; to  -30 °С

to {amp}gt; -20 °C

1

2

3

4

500-2000

0,37

0,41

0,45

2001-5000

0,28

0,30

0,38

5001-10000

0,24

0,27

0,29

10000-15000

0,21

0,23

0,25

15001-25000

0,20

0,21

0,23

{amp}gt;25000

0,19

0,20

0,22

Таблица 4. Удельная тепловая характеристика административных, лечебных и культурно-просветительных зданий, детских учреждений

Наименование зданий

Объем зданий V, м3

Удельные тепловые характеристики

для отопления qo, ккал/м3 ч °С

для вентиляции qv, ккал/м3 ч °С

1

2

3

4

Административные здания, конторы

до 5000

0,43

0,09

до 10000

0,38

0,08

до 15000

0,35

0,07

более 15000

0,32

0,18

Клубы

до 5000

0,37

0,25

до 10000

0,33

0,23

более 10000

0,30

0,20

Кинотеатры

до 5000

0,36

0,43

до 10000

0,32

0,39

более 10000

0,30

0,38

Театры

до 10000

0,29

0,41

до 15000

0,27

0,40

до 20000

0,22

0,38

до 30000

0,20

0,36

более 30000

0,18

0,31

Магазины

до 5000

0,38

до 10000

0,33

0,08

более 10000

0,31

0,27

Детские сады и ясли

до 5000

0,38

0,11

более 5000

0,34

0,10

Школы и высшие учебные заведения

до 5000

0,39

0,09

до 10000

0,35

0,08

более 10000

0,33

0,07

Больницы

до 5000

0,40

0,29

до 10000

0,36

0,28

до 15000

0,32

0,26

более 15000

0,30

0,25

Бани

до 5000

0,28

1,00

до 10000

0,25

0,95

более 10000

0,23

0,90

Прачечные

до 5000

0,38

0,80

до 10000

0,33

0,78

более 10000

0,31

0,75

Предприятия общественного питания, столовые, фабрики-кухни

до 5000

0,35

0,70

до 10000

0,33

0,65

более 10000

0,30

0,60

Лаборатории

до 5000

0,37

1,00

до 10000

0,35

0,95

более 10000

0,33

0,90

Пожарные депо

до 2000

0,48

0,14

до 5000

0,46

0,09

более 5000

0,45

0,09

Гаражи

до 2000

0,70

до 3000

0,60

до 5000

0,55

0,70

более 5000

0,50

0,65

Значение V, м3, следует принимать по информации типового или индивидуального проектов здания или бюро технической инвентаризации (БТИ).

Если здание имеет чердачное перекрытие, значение V, м3, определяется как произведение площади горизонтального сечения здания на уровне его I этажа (над цокольным этажом) на свободную высоту здания — от уровня чистого пола I этажа до верхней плоскости теплоизоляционного слоя чердачного перекрытия, при крышах, совмещенных с чердачными перекрытиями, — до средней отметки верха крыши.

При наличии в здании отапливаемого подвала к полученному объему отапливаемого здания необходимо добавить 40% объема этого подвала. Строительный объем подземной части здания (подвал, цокольный этаж) определяется как произведение площади горизонтального сечения здания на уровне его I этажа на высоту подвала (цокольного этажа).

, (3.3)

где g — ускорение свободного падения, м/с2;

Тепловой расчт системы отопления правила расчета тепловой нагрузки

L — свободная высота здания, м;

w0 — расчетная для данной местности скорость ветра в отопительный период, м/с; принимается по СНиП 23-01-99 [1].

Вводить в расчет расчетной часовой тепловой нагрузки отопления здания так называемую поправку на воздействие ветра не требуется, т.к. эта величина уже учтена в формуле (3.3).

В местностях, где расчетное значение температуры наружного воздуха для проектирования отопления to  -40 °С, для зданий с неотапливаемыми подвалами следует учитывать добавочные тепловые потери через необогреваемые полы первого этажа в размере 5% [11].

— в мае-июне — на 12%;

— в июле-августе — на 20%;

— в сентябре — на 25%;

— в отопительном периоде — на 30%.

, (3.4)

где a = 1,6 ккал/м 2,83 ч °С; n = 6 — для зданий строительства до 1958 г.;

a = 1,3 ккал/м 2,875 ч °С; n = 8 — для зданий строительства после 1958 г.

Q = k F t, (3.5)

где k — коэффициент теплопередачи нагревательного прибора, ккал/м3 ч °С;

F — площадь поверхности теплообмена нагревательного прибора, м2;

t — температурный напор нагревательного прибора, °С, определяемый как разность средней температуры нагревательного прибора конвективно-излучающего действия и температуры воздуха в отапливаемом здании.

Тепловой расчт системы отопления правила расчета тепловой нагрузки

Методика определения расчетной часовой тепловой нагрузки отопления по поверхности установленных нагревательных приборов систем отопления приведена в [10].

1.5. При подключении полотенцесушителей к системе отопления расчетную часовую тепловую нагрузку этих отопительных приборов можно определить как теплоотдачу неизолированных труб в помещении с расчетной температурой воздуха tj = 25 °С по методике, приведенной в [10].

1.6. При отсутствии проектных данных и определении расчетной часовой тепловой нагрузки отопления производственных, общественных, сельскохозяйственных и других нетиповых зданий (гаражей, подземных отапливаемых переходов, бассейнов, магазинов, киосков, аптек и т.д.) по укрупненным показателям, уточнение значений этой нагрузки следует производить по площади поверхности теплообмена установленных нагревательных приборов систем отопления в соответствии с методикой, приведенной в [10].

, (3.6)

где Qcxi — расход тепловой энергии на i-e технологические операции, Гкал/ч;

n — количество технологических операций.

В свою очередь,

Qcxi =1,05 (Qтп Qв) Qпол Qпроп, (3.7)

где Qтп и Qв — тепловые потери через ограждающие конструкции и при воздухообмене, Гкал/ч;

Тепловой расчт системы отопления правила расчета тепловой нагрузки

Qпол Qпроп — расход тепловой энергии на нагрев поливочной воды и пропарку почвы, Гкал/ч;

1,05 — коэффициент, учитывающий расход тепловой энергии на отопление бытовых помещений.

Qтп = FK (tj — to) 10-6, (3.8)

где F — площадь поверхности ограждающей конструкции, м2;

K — коэффициент теплопередачи ограждающей конструкции, ккал/м2 ч °С; для одинарного остекления можно принимать K = 5,5, однослойного пленочного ограждения K = 7,0 ккал/м2 ч °С;

Бывает: а) среднесуточная пдКприз.Сл.Ср.Сут. Б) максимальноразовая пдКприз.Сл.Max.Раз.

ПДКприз.сл.max.раз.
в 3 раза {amp}lt; ПДКр.з.

ПДКприз.сл.ср.сут.
в 3 раза {amp}lt;
ПДКприз.сл.max.раз

Для
пыли ПДКприз.сл.ср.сут.
= 0,15 мг/м3

ПДКприз.сл.max.раз.
= 0,5 мг/м3

  1. ПДК
    в выбросе.
    ПДКвыбр.

Для
пыли ПДКвыбр.
≤ 100 мг/м3

Исходные данные для теплового расчета системы отопления

При отсутствии такого устройства, как счетчик на горячую воду, формула расчета тепла на отопление должна быть следующей: Q = V * (T1 – T2) / 1000. переменные в данном случае отображают такие значения, как:

  • Q в данном случае – это общий объем энергии тепла;
  • V – показатель потребления горячей воды, который измеряется либо в тоннах, либо в кубических метрах;
  • T1 – температурный параметр горячей воды (измеряется в привычных градусах Цельсия). В данном случае более уместно будет брать в расчет ту температуру, которая характерна для определенного рабочего давления. Этот показатель имеет специальное название – энтальпия. Но в случае отсутствия требуемого датчика можно принять за основу ту температуру, которая будет максимально приближена к энтальпии. Как правило, ее средний показатель варьируется в пределах от 60 до 65°C;
  • T2 в этой формуле – температурный показатель холодной воды, который также измеряется в градусах Цельсия. Ввиду того, что попасть к трубопроводу с холодной водой весьма проблематично, подобные значения определяются постоянными величинами, которые отличаются в зависимости от погодных условий за пределами жилища. К примеру, в зимнее время года, то есть в самый разгар отопительного сезона, эта величина составляет 5°C, а летом, когда отопительный контур отключен – 15°C;
  • 1000 – это обычный коэффициент, при помощи которого можно получить результат в гигакалориях, что более точно, а не в обычных калориях.

Расчет гкал на отопление в закрытой системе, которая является более удобной для эксплуатации, должен проходить несколько иным образом. Формула расчета отопления помещения с закрытой системой является следующей: Q = ((V1 * (T1 – T)) — (V2 * (T2 – T))) / 1000.

  • Q – все тот же объем тепловой энергии;
  • V1 – это параметр расхода теплоносителя в подающей трубе (источником тепла может выступать как обычная вода, так и водяной пар);
  • V2 – объем расхода воды в трубопроводе отвода;
  • T1 – температурное значение в трубе подачи теплоносителя;
  • T2 – показатель температуры на выходе;
  • T – температурный параметр холодной воды.

Можно сказать, что расчет теплоэнергии на отопление в данном случае зависит от двух значений: первое из них отображает поступившее в систему тепло, измеряемое в калориях, а второе – тепловой параметр при отводе теплоносителя по обратному трубопроводу.

Рассчитать количества поступающего в отопительную систему тепла можно и другими способами.

Формула расчета за отопление в данном случае может несколько отличаться от вышеупомянутой и иметь два варианта:

  1. Q = ((V1 * (T1 — T2)) (V1 — V2) * (T2 – T)) / 1000.
  2. Q = ((V2 * (T1 — T2)) (V1 — V2) * (T1 – T)) / 1000.

Все значения переменных в этих формулах являются теми же, что и ранее.

Исходя из этого, можно с уверенностью сказать, что расчет киловатт отопления вполне можно выполнить своими собственными силами. Однако не стоит забывать о консультации со специальными организациями, ответственными за подачу тепла в жилища, поскольку их принципы и система расчетов могут быть абсолютно другими и состоять из совершенного иного комплекса мероприятий.

Решившись конструировать в частном доме систему так называемого «теплого пола», нужно быть готовым к тому, что процедура расчета объема тепла будет значительно сложнее, так как в данном случае следует учитывать не только особенности отопительного контура, но и предусмотреть параметры электрической сети, от которой и будет подогреваться пол. При этом и организации, отвечающие за контроль над такими монтажными работами, будут совершенно иными.

Многие хозяева зачастую сталкиваются с проблемой, связанной с переводом нужного количества килокалорий в киловатты, что обусловлено использованием многими вспомогательными пособиями измерительных единиц в международной системе, называемой «Си». Здесь требуется запомнить, что коэффициент, переводящий килокалории в киловатты, будет составлять 850, то есть, говоря более простым языком, 1 кВт – это 850 ккал.

Для того чтобы избежать ошибок в вычислениях, важно помнить, что абсолютно все современные тепловые счетчики имеют некоторую погрешность, при этом зачастую в допустимых пределах. Расчет такой погрешности также можно выполнить самостоятельно, воспользовавшись следующей формулой: R = (V1 — V2) / (V1 V2) * 100, где R – погрешность общедомового счетчика на отопление.

V1 и V2 – это уже упомянутые выше параметры расхода воды в системе, а 100 – коэффициент, отвечающий за перевод полученного значения в проценты. В соответствии с эксплуатационными нормами максимально допустимая погрешность может составлять 2%, но обычно этот показатель в современных приборах не превышает 1%.

Правильно выполненный расчет потребления тепловой энергии – это залог экономного расхода финансовых средств, затрачиваемых на отопление. Приводя пример среднего значения, можно отметить, что при обогреве жилой постройки площадью в 200 м² в соответствии с вышеописанными формулами вычислений объем тепла будет составлять приблизительно 3 гкал за один месяц.

Расход тепловой энергии на отопление

Система отопления вашего дома должна быть собрана грамотно. Только так можно гарантировать эффективное ее функционирование, экономию топлива, высокую теплоотдачу и бесшумность работы. Все четыре качества определяют степень комфортного проживания зимой внутри дома. Поэтому расчет тепла — это необходимая процедура.

Чтобы правильно провести расчет, нужны знания формул и различных коэффициентов, которые основываются на состоянии дома в целом.

Тепловой расчт системы отопления правила расчета тепловой нагрузки

Итак, перед тем как рассчитывать систему отопления собственного дома, вы должны выяснить некоторые данные, которые касаются самой постройки.

  • Из проекта дома вы узнаете размеры отапливаемых помещений — высоту стен, площадь, количество оконных и дверных проемов, а также их размеры.
  • Как расположен дом относительно сторон света. Не забывайте про среднюю температуру зимой в вашем регионе.
  • Из какого материала сооружено само здание. Особое внимание наружным стенам.
  • Обязательно определяем составляющие от пола до грунта, куда входит фундамент здания.
  • То же самое относится и к верхним элементам, то есть к потолку, кровле и перекрытиям .

Именно эти параметры строения позволят вам перейти к проведению гидравлического расчета. Скажем прямо, вся вышеописанная информация доступна, так что проблем с ее сбором не должно возникнуть.

Первым и самым важным этапом в нелегком процессе организации отопления любого объекта недвижимости (будь-то загородный дом или промышленный объект) является грамотное выполнение проектирования и расчета. В частности, следует обязательно рассчитать тепловые нагрузки на обогревательную систему, а также объем потребления тепла и топлива.

Выполнение предварительных расчетом необходимо не только для того, чтобы получить весь ассортимент документации для организации отопления объекта недвижимости, но еще и для понимания объемов топлива и тепла, подбора того или иного типа генераторов теплоты.

Читать далее:  Схемы электропроводки в частном доме правила проектирования и советы по разводке электрики

Под определением «тепловая нагрузка на отопление» следует понимать количество теплоты, которое в совокупности отдается приборами обогрева, установленными в доме или на другом объекте. Следует отметить, что перед установкой всей техники данный расчет производится для исключения каких-то неприятностей, лишних финансовых затрат и работ.

Тепловой расчт системы отопления правила расчета тепловой нагрузки

Расчет тепловых нагрузок на отопление поможет организовать бесперебойную и эффективную работу системы обогрева объекта недвижимости. Благодаря этому расчету можно быстро выполнить абсолютно все задачи теплоснабжения, обеспечить их соответствие нормам и требованиям СНиП.

Комплекс приборов для выполнения расчетов

Цена ошибки, допущенной в расчете, может быть довольно значительной. Все дело в том, что в зависимости от полученных расчетных данных, в отделении ЖКХ города будут выделяться максимальные расходные параметры, устанавливаются лимиты и прочие характеристики, от которых и отталкиваются при расчете стоимости услуг.

Общая тепловая нагрузка на современную систему отопления состоит из нескольких основных параметров нагрузок:

  • На общую систему центрального отопления;
  • На систему напольного отопления (если она имеется в доме) – теплого пола;
  • Систему вентиляции (естественной и принудительной);
  • Систему горячего водоснабжения;
  • На всевозможные технологические нужды: бассейны, бани и прочие подобные конструкции.

Расчет и составляющие тепловых систем дома

Основные характеристики объекта, важные для учета при расчете тепловой нагрузки

Наиболее правильно и грамотно расчетная тепловая нагрузка на отопление будет определена лишь в том случае, когда учтены абсолютно все, даже самые мелкие детали и параметры.

Перечень этот довольно большой и в него можно включить:

  • Тип и назначение объектов недвижимости. Жилое либо нежилое здание, квартира или административное строение – все это очень важно для получения достоверных данных теплового расчета.

Также, от типа строения зависит норма нагрузок, которую определяют компании теплопоставщики и, соответственно, расходы на отопление;

  • Архитектурная часть. Учитываются габариты всевозможных наружных ограждений (стен, полов, крыши), размеры проемов (балконы, лоджии, двери и окна). Важна этажность здания, наличие подвалов, чердаков и их особенности;
  • Температурные требования для каждого из помещений здания. Под этим параметром следует понимать режимы температуры для каждой комнаты жилого дома или зоны административного строения;
  • Конструкция и особенности наружных ограждений, в том числе, тип материалов, толщина, наличие утепляющих прослоек;

Физические показатели охлаждения помещения – данные для расчета тепловой нагрузки

  • Характер назначения помещения. Как правило, присуще для производственных строений, где для цеха или же участка нужно создать какие-то определенные тепловые условия и режимы;
  • Наличие и параметры специальных помещений. Наличие тех же бань, бассейнов и прочих подобных конструкций;
  • Степень технического обслуживания – наличие горячего водопровода, типа централизованного отопления, систем вентиляции и кондиционирования;
  • Общее количество точек, из которых производится забор горячей воды. Именно на эту характеристику следует обращать особое внимание, ведь чем больше число точек – тем больше будет тепловая нагрузка на всю систему отопления в целом;
  • Число людей, проживающих в доме или находящихся на объекте. От этого зависят требования к влажности и температуре – факторы, которые входят в формулу расчета тепловой нагрузки;
  1. Площадь постройки, высота до потолков и внутренний объем.
  2. Тип здания, наличие примыкающих к нему строений.
  3. Материалы, использованные при возведении постройки – из чего и как сделаны пол, стены и крыша.
  4. Количество окон и дверей, как они обустроены, насколько качественно утеплены.
  5. Для каких целей будут использоваться те или иные части здания – где будут располагаться кухня, санузел, гостиная, спальни, а где – нежилые и технические помещения.
  6. Продолжительность отопительного сезона, средний минимум температуры в этот период.
  7. «Роза ветров», наличие неподалеку других строений.
  8. Местность, где уже построен или только еще будет возводиться дом.
  9. Предпочтительная для жильцов температура тех или иных помещений.
  10. Расположение точек для подключения к водопроводу, газу и электросети.

Теплопотери в доме

Мероприятия по теплоизоляции, приведенные на изображении выше, помогут существенно уменьшить количество энергии и теплоносителя, необходимого для обогрева жилого дома

  • уменьшение расчетных тепловых нагрузок,
  • сокращение затрат на отопление,
  • согласование изменений состава теплопотребляющего оборудования (изменение количества отопительных приборов, установка или демонтаж системы вентиляции), например, организациям, установившим систему приточной вентиляции или тепловую завесу,
  • для доказательства соответствия новой тепловой нагрузки и нового потребления тепловой энергии расчетному лимиту,
  • проектирование собственного отопления,
  • при проектировании индивидуального пункта теплоснабжения,
  • для правильного разделения тепловой нагрузки между субабонентами,
  • подключение новых объектов, зданий или комплексов к системе отопления,
  • для заключения нового договора с теплоснабжающей организацией.
  • для организаций, получивших уведомление о необходимости уточнения тепловых нагрузок нежилых помещений,
  • организациям, оплачивающим услуги расчетным методом (не имеющим возможности установить прибор учета),
  • после необоснованного увеличения потребления тепла энергоснабжающей или управляющей компанией.

Лекция 19 Особенности современных систем отопления запорно-регулируюшая арматура Общие сведения

1. Отопление

, (3.1)

, (3.2)

Тепловой расчт системы отопления правила расчета тепловой нагрузки

, (3.3)

, (3.4)

Q = k F t, (3.5)

, (3.6)

В свою очередь,

Qв = 22,8 Fинв S (tj — to) 10-6, (3.9)

где Fинв — инвентарная площадь оранжереи, м2;

Тепловой расчт системы отопления правила расчета тепловой нагрузки

S — коэффициент объема, представляющий собой соотношение объема оранжереи и ее инвентарной площади, м; может быть принят в пределах от 0,24 до 0,5 для малых оранжерей и 3 и более м — для ангарных.

Qв = 11,4 Fинв S (tj — to) 10-6. (3.9a)

, (3.10)

где Fполз — полезная площадь оранжереи, м2;

n — продолжительность полива, ч.

. (3.11)

2. Приточная вентиляция

2.1. При наличии типового или индивидуального проектов здания и соответствии установленного оборудования системы приточной вентиляции проекту расчетную часовую тепловую нагрузку вентиляции можно принять по проекту с учетом различия значений расчетной температуры наружного воздуха для проектирования вентиляции, принятого в проекте, и действующим нормативным значением для местности, где расположено рассматриваемое здание.

, (3.1a)

где Qв.р — расчетная часовая нагрузка приточной вентиляции, Гкал/ч;

Qв.пр — то же, по проекту, Гкал/ч;

tv.пр — расчетная температура наружного воздуха, при которой определена тепловая нагрузка приточной вентиляции в проекте, °С;

tv — расчетная температура наружного воздуха для проектирования приточной вентиляции в местности, где расположено здание, °С; принимается по указаниям СНиП 23-01-99 [1].

Q = Lc (2 1) 10-6, (3.12)

Тепловой расчт системы отопления правила расчета тепловой нагрузки

где L — объемный расход нагреваемого воздуха, м3/ч;

 — плотность нагреваемого воздуха, кг/м3;

c — теплоемкость нагреваемого воздуха, ккал/кг;

2 и 1 — расчетные значения температуры воздуха на входе и выходе калориферной установки, °С.

Методика определения расчетной часовой тепловой нагрузки приточных калориферных установок изложена в [10].

Qv = Vqv (tj — tv) 10-6, (3.2а)

где qv — удельная тепловая вентиляционная характеристика здания, зависящая от назначения и строительного объема вентилируемого здания, ккал/м3 ч °С; можно принимать по таблице 4.

3. Горячее водоснабжение

, (3.13)

где a — норма затрат воды на горячее водоснабжение абонента, л/ед. измерения в сутки; должна быть утверждена местным органом самоуправления; при отсутствии утвержденных норм принимается по таблице Приложения 3 (обязательного) СНиП 2.04.01-85 [3];

N — количество единиц измерения, отнесенное к суткам, — количество жителей, учащихся в учебных заведениях и т.д.;

tc — температура водопроводной воды в отопительный период, °С; при отсутствии достоверной информации принимается tc = 5 °С;

T — продолжительность функционирования системы горячего водоснабжения абонента в сутки, ч;

Qт.п — тепловые потери в местной системе горячего водоснабжения, в подающем и циркуляционном трубопроводах наружной сети горячего водоснабжения, Гкал/ч.

, (3.13a)

где Qhm — средняя часовая тепловая нагрузка горячего водоснабжения в отопительный период, Гкал/ч;

Тепловой расчт системы отопления правила расчета тепловой нагрузки

 — коэффициент, учитывающий снижение средней часовой нагрузки горячего водоснабжения в неотопительный период по сравнению с нагрузкой в отопительный период; если значение  не утверждено органом местного самоуправления,  принимается равным 0,8 для жилищно-коммунального сектора городов средней полосы России, 1,2-1,5 — для курортных, южных городов и населенных пунктов, для предприятий — 1,0;

ths, th — температура горячей воды в неотопительный и отопительный период, °С;

tcs, tc — температура водопроводной воды в неотопительный и отопительный период, °С; при отсутствии достоверных сведений принимается tcs = 15 °С, tc = 5 °С.

, (3.14)

где Ki — коэффициент теплопередачи участка неизолированного трубопровода, ккал/м2 ч °С; можно принимать Ki = 10 ккал/м2 ч °С;

di и li — диаметр трубопровода на участке и его длина, м;

tн и tк — температура горячей воды в начале и конце расчетного участка трубопровода, °С;

— в бороздах, вертикальных каналах, коммуникационных шахтах сантехкабин tокр = 23 °С;

— в ванных комнатах tокр = 25 °С;

— в кухнях и туалетах tокр = 21 °С;

— на лестничных клетках tокр = 16 °С;

— в каналах подземной прокладки наружной сети горячего водоснабжения tокр = tгр;

Тепловой расчт системы отопления правила расчета тепловой нагрузки

— в тоннелях tокр = 40 °С;

— в неотапливаемых подвалах tокр = 5 °С;

— на чердаках tокр = -9 °С (при средней температуре наружного воздуха самого холодного месяца отопительного периода tн = -11 … -20 °С);

 — коэффициент полезного действия тепловой изоляции трубопроводов; принимается для трубопроводов диаметром до 32 мм  = 0,6; 40-70 мм  = 0,74; 80-200 мм  = 0,81.

Таблица 5. Удельные тепловые потери трубопроводов систем горячего водоснабжения (по месту и способу прокладки)

Место и способ прокладки

Тепловые потери трубопровода, ккал/чм, при условном диаметре, мм

15

20

25

32

40

50

70

1

2

3

4

5

6

7

8

Главный подающий стояк в штрабе или коммуникационной шахте, изолирован

17,0

21,8

19,1

24,5

23,4

30,0

Стояк без полотенцесушителей, изолированный, в шахте сантехкабины, борозде или коммуникационной шахте

9,70

12,8

10,8

14,2

11,9

15,7

13,5

17,8

То же, с полотенцесушителями

17,8

23,4

20,7

27,3

25,3

33,3

Стояк неизолированный в шахте сантехкабины, борозде или коммуникационной шахте или открыто в ванной, кухне

20,7

27,3

25,5

35,6

30,2

39,8

37,8

49,8

Распределительные изолированные трубопроводы (подающие):

в подвале, на лестничной клетке

13,5

16,6

15,0

13,4

16,5

20,3

18,8

23,1

20,8

25,6

23,4

26,8

26,8

36,2

на холодном чердаке

16,6

19,7

18,5

21,9

20,3

24,1

23,2

27,5

25,6

30,4

28,8

34,2

35,2

41,8

на теплом чердаке

11,6

14,7

13,0

16,5

14,3

18,1

16,3

20,6

17,9

22,7

20,2

25,6

24,6

31,2

Циркуляционные трубопроводы изолированные:

в подвале

10,9

14,0

12,1

15,6

13,3

17,1

15,1

19,4

16,7

21,5

18,8

24,2

23,0

29,6

на теплом чердаке

9,0

12,0

10,0

13,4

11,0

14,8

12,6

16,9

13,8

18,6

15,6

21,0

19,1

25,7

на холодном чердаке

14,0

17,1

15,6

19,1

17,1

20,9

19,4

23,7

21,5

23,7

24,2

29,6

29,6

36,2

Циркуляционные трубопроводы неизолированные:

в квартирах

20,0

26,9

24,6

33,1

29,2

39,3

36,6

49,2

43,0

57,8

52,0

69,9

72,0

96,8

на лестничной клетке

23,5

30,4

28,9

37,4

34,2

44,2

42,8

55,4

50,3

65,1

60,8

78,7

84,5

109,4

Циркуляционные стояки в штрабе сантехнической кабины или ванной:

изолированные

9,4

12,9

10,3

14,1

11,7

16,0

12,9

17,7

14,6

20,0

17,8

24,4

неизолированные

23,0

31,5

27,1

31,5

34,0

46,6

40,0

54,8

48,3

66,2

67,2

92,1

Примечание. В числителе — удельные тепловые потери трубопроводов систем горячего водоснабжения без непосредственного водоразбора в системах теплоснабжения, в знаменателе — с непосредственным водоразбором.

Тепловой расчт системы отопления правила расчета тепловой нагрузки

Таблица 6. Удельные тепловые потери трубопроводов систем горячего водоснабжения (по перепаду температуры)

Перепад температуры, °С

Тепловые потери трубопровода, ккал/ч м, при условном диаметре, мм

15

20

25

32

40

50

70

80

100

125

150

200

1

2

3

4

5

6

7

8

9

10

11

12

13

30

22,0

28,0

35,0

44,0

48,0

54,0

68,0

80,0

97,0

119,0

143,0

173,0

32

23,0

30,0

37,0

47,0

50,0

58,0

73,0

85,0

103,0

127,0

152,0

185,0

34

25,0

32,0

39,0

50,0

53,0

61,0

77,0

91,0

110,0

135,0

162,0

196,0

36

26,0

33,0

42,0

53,0

56,0

65,0

82,0

95,0

116,0

143,0

171,0

208,0

38

28,0

35,0

44,0

56,0

60,0

68,0

86,0

102,0

123,0

151,0

181,0

219,0

40

29,0

37,0

46,0

59,0

63,0

72,0

91,0

107,0

129,0

159,0

190,0

231,0

42

31,0

39,0

49,0

63,0

67,0

76,0

97,0

114,0

137,0

169,0

202,0

242,0

44

33,0

42,0

52,0

66,0

71,0

81,0

103,0

121,0

145,0

179,0

214,0

254,0

46

34,0

44,0

54,0

70,0

75,0

85,0

108,0

127,0

154,0

189,0

226,0

265,0

48

36,0

46,0

57,0

73,0

79,0

90,0

114,0

134,0

162,0

199,0

238,0

277,0

50

38,0

48,0

60,0

77,0

83,0

94,0

120,0

140,0

170,0

209,0

250,0

288,0

52

40,0

51,0

63,0

81,0

87,0

99,0

126,0

147,0

179,0

220,0

263,0

300,0

54

42,0

53,0

66,0

85,0

91,0

104,0

132,0

155,0

188,0

230,0

276,0

312,0

56

44,0

56,0

70,0

88,0

95,0

108,0

139,0

162,0

197,0

241,0

289,0

323,0

58

46,0

58,0

73,0

92,0

99,0

113,0

145,0

170,0

206,0

252,0

302,0

335,0

60

48,0

61,0

76,0

96,0

104,0

113,0

151,0

177,0

215,0

263,0

315,0

347,0

Примечание. При перепаде температуры горячей воды, отличном от приведенных его значений, удельные тепловые потери следует определять интерполяцией.

Qт.п = Qhm Kт.п. (3.15)

Qг = Qhm (1 Kт.п). (3.16)

Для определения значений коэффициента Kт.п можно пользоваться таблицей 7.

Таблица 7. Коэффициент, учитывающий тепловые потери трубопроводами систем горячего водоснабжения

Система горячего водоснабжения

Коэффициент, учитывающий тепловые потери трубопроводами систем горячего водоснабжения

с наружной сетью горячего водоснабжения

без наружной сети горячего водоснабжения

с изолированными стояками

с полотенцесушителями

0,25

0,2

без полотенцесушителей

0,15

0,1

с неизолированными стояками

с полотенцесушителями

0,35

0,3

без полотенцесушителей

0,25

0,2

Холодоносителем
для СКВ, как правило, является вода,
получаемая от холодильных установок,
а в отдельных случаях – от естественных
источников. Выбор системы холодоснабжения
зависит от способа получения холодной
воды, расстояния потребителей от
источника холода, типа испарителя, а
также от способа присоединения
воздухоохладителя к холодоносителю.

Теплопотери в доме

Расчет систем отопления (часть 2 -Теплотехнический расчет здания)

1. Отопление

, (3.1)

, (3.2)

, (3.3)

, (3.4)

Q = k F t, (3.5)

, (3.6)

В свою очередь,

, (3.10)

. (3.11)

, (3.1a)

, (3.13)

, (3.13a)

, (3.14)

Теплопотери в доме

Тепловой расчт системы отопления правила расчета тепловой нагрузки

Шаг 2. Полученная цифра умножается на 100-150 – именно столько ватт от общей мощности отопительной системы нужно на каждый м2 жилья.

Шаг 3. Затем результат умножается на 1,2 или 1,25 – это необходимо для создания запаса мощности, чтобы отопительная система была способна поддерживать комфортную температуру в доме даже в случае самых сильных морозов.

Шаг 4. Вычисляется и записывается конечная цифра – мощность системы отопления в ваттах, необходимая для обогрева того или иного жилья. В качестве примера – для поддержания комфортной температуры в частном доме площадью 120 м2 потребуется примерно 15 000 Вт.

Шаг 5. По уже определенным расчетным данным подбирается конкретная модель нагревательного котла и радиаторов.

Расчет площади коттеджа по его плану. Также здесь отмечены магистрали отопительной системы и места установки радиаторов

Таблица расчета мощности радиаторов по площади помещения

Следует понимать, что единственным преимуществом подобного способа теплового расчета отопительной системы является скорость и простота. При этом метод обладает множеством недостатков.

  1. Отсутствие учета климата в той местности, где возводиться жилье – для Краснодара система отопления с мощностью 100 Вт на каждый квадратный метр будет явно избыточной. А для Крайнего Севера она может оказаться недостаточной.
  2. Отсутствие учета высоты помещений, типа стен и полов, из которых они возведены – все эти характеристики серьезно влияют на уровень возможных тепловых потерь и, следовательно, на необходимую мощность отопительной системы для дома.
  3. Сам способ расчета системы отопления по мощности изначально был разработан для больших производственных помещений и многоквартирных домов. Следовательно, для отдельного коттеджа он не является корректным.
  4. Отсутствие учета количества окон и дверей, выходящих на улицу, а ведь каждый из подобных объектов является своеобразным «мостиком холода».

Тепловой расчт системы отопления правила расчета тепловой нагрузки

Так имеет ли смысл применять расчет системы отопления по площади? Да, но только в качестве предварительных прикидок, позволяющих получить хоть какое-то представление о вопросе. Для достижения лучших и более точных результатов следует обратиться к более сложным методикам.

Шаг 3. Определяется коэффициент, зависящий от местности, в которой стоит дом и того, насколько там сильные морозы.

Таблица. Значения региональных коэффициентов для расчета мощности отопления по объему.

Тип зимы Значение коэффициента Регионы, для которых данный коэффициент применим
Теплая зима. Холода отсутствуют или очень слабы От 0,7 до 0,9 Краснодарский край, побережье Черного моря
Умеренная зима 1,2 Средняя полоса России, Северо-Запад
Суровая зима с достаточно сильными холодами 1,5 Сибирь
Экстремально холодная зима 2,0 Чукотка, Якутия, регионы Крайнего Севера
Читать далее:  Ленинградка система отопления диаметры труб

Так как в примере речь идет о доме, построенном в Московской области, то региональный коэффициент будет иметь значение 1,2.

Шаг 4. Для отдельно стоящих частных коттеджей определенное в первой операции значение объема здания умножается на 60. Делаем подсчет – 240*60=14 400.

Шаг 5. Затем результат вычисления предыдущего шага множится на региональный коэффициент: 14 400 * 1,2 = 17 280.

Шаг 6. Число окон в доме умножается на 100, число дверей, выходящих наружу – на 200. Результаты суммируются. Вычисления в примере выглядят следующим образом – 6*100 2*200 = 1000.

Шаг 7. Цифры, полученные по итогам пятого и шестого шагов, суммируются: 17 280 1000 = 18 280 Вт. Это и есть мощность отопительной системы, необходимая для поддержания оптимальной температуры в здании при условиях, указанных выше.

Стоит понимать, что расчет системы отопления по объему также не является абсолютно точным – в вычислениях не уделяется внимание материалу стен и пола здания и их теплоизоляционным свойствам. Также не делается поправка на естественную вентиляцию, свойственную любому дому.

Тепловой расчт системы отопления правила расчета тепловой нагрузки

А 1,2 – это коэффициент резерва по мощности. Желательно учитывать его в ходе расчетов – тогда вы точно можете быть уверены в том, что нагревательный котел обеспечит вам комфортную температуру в доме даже в самые сильные морозы за окном.

Отопительный котел должен обеспечивать комфортную температуру вне зависимости от погоды за окном

Цифру 100 вы могли видеть ранее – это количество ватт, необходимых для обогрева одного квадратного метра жилой комнаты. Если речь идет о нежилом помещении, кладовке и т. д. – его можно изменить в меньшую сторону. Также данная цифра нередко корректируется, исходя из личных предпочтений хозяина дома – кому-то комфортно в «натопленной» и очень теплой комнате, кому-то больше по душе прохлада поэтому печь с водяным контуром для отопления дома, возможно подойдет вам.

S – площадь комнаты. Высчитывается на основе плана постройки или уже по готовым помещениям.

Теперь перейдем непосредственно к корректирующим коэффициентам. К1 учитывает конструкцию окон, применяющихся в той или иной комнате. Чем больше значение – тем выше потери тепла. Для самого простого одинарного стекла К1 равен 1,27, для двойного и тройного стеклопакетов – 1 и 0,85 соответственно.

Виды стеклопакетов

К2 учитывает фактор потерь тепловой энергии через стены здания. Значение зависит от того, из какого материала они сложены, и обладают ли слоем теплоизоляции.

Некоторые из примеров данного коэффициента приведены в следующем списке:

  • кладка в два кирпича со слоем теплоизоляции 150 мм – 0,85;
  • пенобетон – 1;
  • кладка в два кирпича без теплоизоляции – 1,1;
  • кладка в полтора кирпича без теплоизоляции – 1,5;
  • стена бревенчатого сруба – 1,25;
  • стена из бетона без утепления – 1,5.

Затраты на утеплитель на этапе строительства дома окупят себя путем экономии на счетах за газ и воду

К3 показывает соотношение площади окон к площади помещения. Очевидно, что чем больше их – тем выше теплопотери, так как каждое окно является «мостиком холода», и полностью этот фактор нельзя устранить даже для самых качественных тройных стеклопакетов с прекрасным утеплением. Значения данного коэффициента приведены в таблице ниже.

Таблица. Корректирующий коэффициент соотношения площади окон к площади помещения.

Соотношение площади окон к площади пола в помещении Значение коэффициента К3
10% 0,8
20% 1,0
30% 1,2
40% 1,4
50% 1,5

Тепловой расчт системы отопления правила расчета тепловой нагрузки

По своей сути К4 похож на региональный коэффициент, который использовался в тепловом расчете системы отопления по объему жилья. Но в данном случае он привязан не к какой-то конкретной местности, а к среднему минимуму температуры в самый холодный месяц года (обычно для этого выбирается январь). Соответственно, чем этот коэффициент выше, тем больше энергии потребуется для отопительных нужд – прогреть помещение при -10°С намного проще, чем при -25°С.

Все значения К4 приведены ниже:

  • до -10°С – 0,7;
  • -10°С – 0,8;
  • -15°С – 0,9;
  • -20°С – 1,0;
  • -25°С – 1,1;
  • -30°С – 1,2;
  • -35°С – 1,3;
  • ниже -35°С – 1,5.

Это карта среднемесячных температур в России на январь

Следующий коэффициент К5 учитывает число стен в помещении, выходящих наружу. Если она одна – его значение равно 1, для двух – 1,2, для трех – 1,22, для четырех – 1,33.

Перейдем к двум последним корректирующим коэффициентам. К6 учитывает то, что находится над помещением – жилой и отапливаемый этаж (0,82), утепленный чердак (0,91) или холодный чердак (1).

К7 корректирует результаты расчета в зависимости от высоты комнаты:

  • для помещения высотой 2,5 м – 1;
  • 3 м – 1,05;
  • 5 м – 1,1;
  • 0 м – 1,15;
  • 5 м – 1,2.

Результатом применения формулы, изложенной выше, станет требуемая мощность отопительного котла для частного дома. А теперь приведем пример расчета по данному способу. Исходные условия следующие.

  1. Площадь помещения – 30 м2. Высота – 3 м.
  2. В качестве окон используются двойные стеклопакеты, их площадь относительно таковой у комнаты – 20%.
  3. Тип стены – кладка в два кирпича без слоя теплоизоляции.
  4. Средний минимум января для местности, где стоит дом, составляет -25°С.
  5. Помещение является угловым в коттедже, следовательно, наружу выходят две стены.
  6. Над комнатой – утепленный чердак.

Q=1,2*100*30*1*1,1*1*1,1*1,2*0,91*1,02=4852 Вт

Двухтрубная схема нижней разводки системы отопления

Программный продукт nanoCAD «Отопление» включает в себя специализированные инструменты инженера-проектировщика отопительных систем

После завершения расчетов, изложенных выше, необходимо определить, сколько радиаторов и с каким числом секций понадобится для каждого отдельного помещения. Для подсчета их количества есть простой способ.

Шаг 1. Определяется материал, из которого будут изготовлены батареи отопления в доме. Это может быть сталь, чугун, алюминий или биметаллический композит.

Шаг 2. Далее указываются места, где будут располагаться радиаторы. В большинстве помещений они находятся под окнами – там батарея создает воздушную тепловую завесу, мешающую холоду проникнуть внутрь.

Шаг 3. Подбираются модели радиаторов, подходящих владельцу частного дома по стоимости, материалу и некоторым другим характеристикам.

Шаг 4. На основании технической документации, ознакомиться с которой можно на сайте компании-производителя или продавца радиаторов, определяется, какую мощность выдает каждая отдельная секция батареи.

Гидравлический расчет

Итак, с теплопотерями определились, мощность отопительного агрегата подобрана, остается лишь определиться с объемом необходимого теплоносителя, а, соответственно, и с размерами, а также материалами используемых труб, радиаторов и запорной арматуры.

В первую очередь определяем объем воды внутри отопительной системы. Для этого потребуются три показателя:

  1. Общая мощность отопительной системы.
  2. Разница температур на выходе и входе в отопительный котел.
  3. Теплоемкость воды. Этот показатель стандартный и равен 4,19 кДж.

Гидравлический расчет системы отопления

Формула такова — первый показатель делим на два последних. Кстати, этот тип расчета может быть использован для любого участка системы отопления. Здесь важно разбить магистраль на части, чтобы в каждой скорость движения теплоносителя была одинаковой. Поэтому специалисты рекомендуют делать разбивку от одной запорной арматуры до другой, от одного радиатора отопления к другому.

Теперь переходим к расчету потерь напора теплоносителя, которые зависят от трения внутри трубной системы. Для этого используются всего две величины, которые в формуле перемножаются между собой. Это длина магистрального участка и удельные потери трения.

А вот потери напора в запорной арматуре рассчитываются совершенно по другой формуле. В ней учитываются такие показатели, как:

  • Плотность теплоносителя.
  • Его скорость в системе.
  • Суммарный показатель всех коэффициентов, которые присутствуют в данном элементе.

Чтобы все три показателя, которые выведены формулами, подходили к стандартным величинам, необходимо правильно подобрать диаметры труб. Для сравнения приведем пример нескольких видов труб, чтобы было понятно, как их диаметр влияет на тепловую отдачу.

  1. Металлопластиковая труба диаметром 16 мм. Ее тепловая мощность варьируется в диапазоне 2,8-4,5 кВт. Разность показателя зависит от температуры теплоносителя. Но учитывайте, что это диапазон, где установлены минимальный и максимальный показатель.
  2. Та же труба с диаметром 32 мм. В этом случае мощность варьируется в пределах 13-21 кВт.
  3. Труба из полипропилена. Диаметр 20 мм — диапазон мощности 4-7 кВт.
  4. Та же труба диаметром 32 мм — 10-18 кВт.

И последнее — это определение циркуляционного насоса. Чтобы теплоноситель равномерно распределялся по всей отопительной системе, необходимо, чтобы его скорость была не меньше 0,25 м/сек и не больше 1,5 м/сек. При этом давление не должно быть выше 20 МПа. Если скорость теплоносителя будет выше максимально предложенной величины, то трубная система будет работать с шумом. Если скорость будет меньше, то может произойти завоздушивание контура.

Тепловой расчет системы отопления – пошаговая инструкция

Наиболее
распространено получение холода от
искусственных источников – холодильных
машин. Машинное охлаждение – это способ
получения холода за счет изменения
агрегатного состояния холодильного
агента (кипения его при низких температурах
с отводом от охлаждающей среды, необходимой
для этого теплоты парообразования).

Тепловой расчт системы отопления правила расчета тепловой нагрузки

Для
последующей конденсации паров холодильного
агента требуется предварительно повышать
их давление и температуру. По способу
повышения температуры паров и давления
перед их конденсацией различают такие
типы холодильных машин:

  • компрессионные
    – со сжатием паров компрессором с
    затратой механической энергии;

  • абсорбционные
    – с поглощение паров соответствующим
    абсорбентом и выделением их выпариванием
    раствора с затратой тепловой энергии;

  • эжекторные
    – в которых одновременно осуществляется
    два цикла: прямой – с превращением
    подводимой тепловой энергии в механическую
    и обратный – с использованием механической
    энергии для производства холода.

а)
настенные Q=1,5-5
кВТ;

б)
напольно-потолочные Q=49
кВт;

в)
потолочного типа Q=514,5
кВт;

г)
настенного типа Q=514
кВт;

д)
многозональные с изменяемым расходом
хладоагента

Наружный блок –
устанавливается на: стене здания, крыше
или чердаке, балконе – в тех местах где
конденсатор обдувается холодным
атмосферным воздухом.

Внутренний блок —
устанавливается непосредственно в
кондиционируемом помещении.

Преимущества: простота
конструкции, низкая себестоимость.

Недостатки: невозможность
подачи свежего воздуха в помещении.

Наибольшее
распространение получили настенные
кондиционеры, в которых к одному наружному
блоку подключается один внутренний
блок.

Если
к одному наружному блоку подключается
24
внутренних блока = мульти СПЛИТ система.

Ведущими
производителями кондиционеров являются
итальянская фирма DELONGHI.

Управление блоками
осуществляется с пульта дистанционного
управления.

Мощность
настенных кондиционеров ограничена,
так как сильная струя холодного воздуха,
характерная для кондиционеров большой
мощности, может вызвать неприятные
ощущения у потребителя.

Тепловой расчт системы отопления правила расчета тепловой нагрузки

У
напольного кондиционера внутренний
блок имеет несколько другую конструкцию,
чем у настенного. В больших помещениях
(залы библиотек, конференций, ресторанах)
там где нет подвесных потолков
устанавливаются кондиционеры колонного
типа. Такие кондиционеры имеют большую
холодопроизводительность и создают
сильный воздушный поток, который
первоначально может подаваться в
потолок, а затем равномерно распределятся
по всему объему помещения.

В
помещениях с подвесными потолками
устанавливаются кондиционеры кассетного
типа, в которых предусмотрена возможность
присоединения воздуховодов для подачи
до 10% свежего воздуха.

В – наружный блок

1 –
теплообменник-конденсатор

2. –
теплообменник-испаритель

3 – двухходовой
клапан

4 – регулятор
потока

5 – ресивер

6 – компрессор

С подогревом
картера.

Назначение
компрессора: — компрессор всасывает
парообразный хладоагент, поступающий
от испарителя при низком давлении и
низкой температуре, производит его
сжатие, повышая давление и температуру
и направляет его затем в конденсатор.

Параметры
на выходе: атм

а) поршневые

б) ротационные,
винтовые, спиральные

Тепловой расчт системы отопления правила расчета тепловой нагрузки

Принципиальное
отличие ротационных, спиральных и
винтовых компрессоров от поршневых
заключается в том, что всасывание и
сжатие хладоагента осуществляется не
за счет возвратно-поступательного
движения поршней в цилиндре, а за счет
вращательного движения рабочих органов.

Регулятор
потока
— представляет собой капиллярную медную
трубку диаметром
мм. Служит для дозированной подачи
жидкого хладоагента из области высокого
давления (от компрессора) в область
низкого давления (к испарителю). В более
мощных установках применяются
терморегулирующие вентили.

Теплообменники
— выполняются в виде многорядной медной
трубки с пластинчатым оребрением. Служат
для охлаждения (подогрева) рабочей
среды.

а) пластинчатые
испарители для охлаждения воды;

б) кожухотрубные
испарители для охлаждения воздуха

в) испарители для
охлаждения воздуха.

Вентиляторы
— во внешнем блоке устанавливаются
осевые вентиляторы с регулируемой
скоростью вращения. Во внутреннем блоке
применяются вентиляторы тангенциального
типа. Они хорошо вписываются в конструкцию
блока и позволяют получить широкую
струю выходящего воздуха с малым уровнем
шума (беличье колесо).

Дренажная
система –
при работе кондиционера может происходить
конденсация влаги из воздуха, проходящего
через испаритель. Для сбора конденсата
имеется специальный поддон, откуда
влага самотеком выводится на улицу или
отводится в канализацию (дополнительную
емкость).

а
диаметр присоединения находится в
диапазоне 25…300 мм. Применение запорной
арматуры пониженного сопротивления
улучшает условиярегулирования
терморегуляторами потоков теплоносителя
(смотри дальше
разъяснение относительно авторитетов
терморегулятором поскольку
основные потери давления должны
приходиться на них, и уменьшает
эксплуатационные затраты.

Многофункциональность
арматуры упрощает проектирования монтаж
и эксплуатацию систем, уменьшает их
металлоемкость и инерционность.
В особенности это касается спускной
арматуры. Почти вся запорно-регулирующая
арматура, предлагаемая фирмой «Данфосс»
выполняет
данную функцию, реализуемую тремя
способами:

  • специально
    предусмотренными отверстиями в корпусе,
    изначально укомплектованными
    пробками, вентильками или краниками
    значительно
    меньшего размера от основной арматуры
    (в табл. 2 функция
    указана
    без скобок);

  • специально
    предусмотренными отверстиями в корпусе
    с закрытыми
    пробками, которые могут быть заменены
    спускной арматурой по
    заказу
    (эта и другие функции, предусмотренные
    дополнительной комплектацией,
    в табл. 2 указаны в одинарных скобках);

  • дополнительным
    спускным устройством, поставляемым по
    заказу например,
    спускным вентилем для вентилей RLV и
    RLV-K или сервисным
    устройством шлюзового типа для
    терморегуляторов всех типов
    (в табл. 2 функция обозначена двойными
    скобками).

При необходимости
использования запорно-регулирующей
арматуры без спускной функции используют
спускной шаровой кран, присоединяемый
к трубопроводу через тройник.

Отличием
ручной регулирующей арматуры вентильного
типа, например, RLV, RLV-S, RLV-K. ASV-I, MSV-i’m
MSV-F,
является градирование ее гидравлических
характеристик (создаваемого сопротивления)
по подъему штока. Отсчет настройки
начинают от закрытого положения.
Каждый полный оборот открытия отвечает
изменению значения настройки
на единицу, неполный — на доли единицы.
Наличие такой арматуры
позволяет отказаться от практики
применения диафрагм (дроссельных
шайб).

Повышения
надежности работы запорно-регулирующей
арматуры достигают
за счет использования высокоточных
технологий и конструктивного
упрощения, применения высококачественных
уплотнителей.
Так, например, в арматуре ASV-P, ASV-PV, RLV всех
типов ASV-M,
ASV-I, MSV-M, MSV-I регулирование или запирание
осуществляется
без промежуточных элементов (тарелки
с уплотнительной прокладкой),
а непосредственно специально подготовленной
торцевой поверхностью
штока, которая точно подогнана к
поверхности седла. Это дает
возможность также обеспечить точность
поддержания гидравлических
параметров на протяжении всего срока
эксплуатации.

Широкий
диапазон температур теплоносителя
определяет соответствующие
условия эксплуатации. Так, для разных
конструкций шаровых кранов максимальные
рабочие температуры составляют 80…200
°С, клапанов
«Баттерфляй» — 85…200 «С, терморегуляторов
и автоматических регуляторов
— 120 °С. Следует отметить, что
запорно-регулирующая арматура
«Данфосс» для стояков и приборных веток
поставляется в упаковке,
которая используется как теплоизоляционная
оболочка при температуре
теплоносителя до 80 0С,
при
теплоносителе с температурой до 120

заказывается теплоизоляционная оболочка
из стиропора ЕРР

Размещение
арматуры на стояках, приборных ветках,
подводках к отопительным
приборам многовариантное, что рассмотрено
в дальнейших соответствующих разделах.

Современная
запорно-регулирующая арматура
многофункциональна,
чтоупрощает
проектирование, монтаж и эксплуатацию
систем
отопления.

Запорно-регулирующая
арматура имеет конкретное назначение
и взаимоувязку
между собой. Использование арматуры не
по назначению выводит систему отопления
из строя. Так, например, применение
шаровых кранов (запорной арматуры
быстрого действия) для регулирования
теплопередачи отопительных приборов
повышает вероятность образования
гидравлического удара.

Теплопотери в доме

Виды стеклопакетов

Мощность и теплоотдача радиаторов

На этом ознакомление с базовыми знаниями о тепловом расчете системы отопления и способах его осуществления можно считать законченным. Для получения большего объема информации желательно обратиться к специализированной литературе. Также будет не лишним ознакомиться с нормативными документами, такими как СНиП 41-01-2003.

Тепловой расчет системы отопления

Схема, иллюстрирующая систему отопления частного дома

Теплопотери в доме

Мероприятия по теплоизоляции, приведенные на изображении выше, помогут существенно уменьшить количество энергии и теплоносителя, необходимого для обогрева жилого дома

Расчет площади коттеджа по его плану. Также здесь отмечены магистрали отопительной системы и места установки радиаторов

Таблица расчета мощности радиаторов по площади помещения

Расчет мощности системы отопления по объему жилья

Отопительный котел должен обеспечивать комфортную температуру вне зависимости от погоды за окном

Виды стеклопакетов

Затраты на утеплитель на этапе строительства дома окупят себя путем экономии на счетах за газ и воду

Это карта среднемесячных температур в России на январь

Двухтрубная схема нижней разводки ситемы отопления

Программный продукт nanoCAD «Отопление» включает в себя специализированные инструменты инженера-проектировщика отопительных систем

Мощность и теплоотдача радиаторов

Дополнительные режимы: а) ночной

б)
full (auto)

в)
горячий запуск

г) самодиагностика

Многозапальные
системы с изменяемым расходом хладагента.

Кондиционеры
СПЛИТ систем предназначены для
кондиционирования одной комнаты или
max
3-4 комнат от одного блока.

Тепловой расчт системы отопления правила расчета тепловой нагрузки

Многозональные
системы позволяют и одному наружному
блоку присоединить до 16 внутренних
блоков не только различной мощности,
но и различного конструктивного
исполнения.

Может
быть часть работать на режиме охлаждения,
а часть – на режим обогрева.

а) линейная схема

б) схема с коллектором

в) комбинированная
схема.

Тепловой расчт системы отопления правила расчета тепловой нагрузки

После коллекторов
не должно быть дополнительных разветвлений.

Если все внутренние
блоки работают в режиме охлаждения или
нагрева, то эти системы не отличаются
от мульти СПЛИТ систем.

Длина соединительных
трубопроводов должна быть не более
80-100 м.

Физические свойства хладоагентов

Обозначение

Свойства

R
— 22

R
– 134а

R
– 407С

Химическая
формула

CHClF2

CH2FCF3

смесь

Температура
кипения, С

-40,75

-26,1

-43,6

Температура
замерзания, С

-160

-101,0

Плотность
жидкости, кг/м3

1194

1206

1136

Температура
испарения, кДж/кг

233,5

217,1

246,1

Давление
пара, бар при 25 С

10,4

6,66

11,85

Критические
температуры, С

96

101,1

86,7

Критическое
давление, бар

49,77

40,6

46

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
ManRem
Adblock
detector