Солнечные батареи для дома своими руками: как сделать, схемы и все нюансы

Особенности обустройства солнечного коллектора

Это полноценный прибор, использовать который можно будет много лет.

Понадобится:

  • медная или стальная трубка (можно и готовый змеевик, только тщательно промытый);
  • большие трубы;
  • утеплитель в рулонах;
  • ДСП;
  • оконное стекло;
  • герметик, замазка или пена;
  • листы меди (или более дешёвый матовый материал на подложку);
  • бак;
  • уголок;
  • заглушки, саморезы, штуцера, дюбеля;
  • краска тёмного цвета.

Порядок работы:

  1. Из двух медных трубок делается основа. На одном конце каждой трубки устанавливается штуцер и заглушка, а на другом нарезается резьба.
  2. Через каждые 10 см размечаются отверстия. Просверливаются (диаметр не более 9 мм.)
  3. В получившиеся отверстия вставляются трубки, стык проваривается. Должна получиться решётка.
  4. Делается подложка. Можно из меди или более дешёвого аналога. Листы скрепляются меж собой (медь сваривается) и крепится к змеевику.
  5. Получившаяся конструкция покрывается чёрной краской.
  6. Изготавливается ящик-каркас. Из ДСП при помощи металлических уголков и саморезов. В него по размеру должен входить медный змеевик. Высота боковых стенок – около 25 см.
  7. На его дно стелется утеплитель. Например, изовер.
  8. Устанавливается змеевик на медных листах.
  9. Ящик закрывается стеклом. Места стыков герметизируются замазкой, пеной, монтажным клеем или чем-то подобным.

Планируя выполнить подключение солнечных панелей собственноручно, необходимо иметь представление, из каких элементов состоит система.

Солнечные панели состоят из комплекта батарей на фотоэлектрических элементах, основное предназначение которых – преобразовывать солнечную энергию в электрическую. Сила тока системы зависит от интенсивности света: чем ярче излучения, тем больший ток генерируется.

Устройство системы генерации энергии

Помимо солнечного модуля в устройство такой электростанции входят фотоэлектрические преобразователи – контроллер и инвертор, а также подключенные к ним аккумуляторы

Основными конструктивными элементами системы выступают:

  • Солнечная батарея – преобразует солнечный свет в электрическую энергию.
  • Аккумулятор – химический источник тока, который накапливает сгенерированную электроэнергию.
  • Контроллер заряда – следит за напряжением аккумуляторов.
  • Инвертор, преобразующий постоянное электрическое напряжение аккумуляторной батареи в переменное 220В, которое необходимо для функционирования системы освещения и работы бытовой техники.
  • Предохранители, устанавливаемые между всеми элементами системы и защищающие систему от короткого замыкания.
  • Комплект коннекторов стандарта МС4.

Помимо основного предназначения контроллера – следить за напряжением аккумуляторов, устройство по мере необходимости отключает те или иные элементы. Если показатель на клеммах аккумулятора в дневное время достигает отметки в 14 Вольт, что указывает на их перезарядку, контроллер прерывает зарядку.

В ночной период, когда показатель напряжения аккумуляторов достигает предельно низкой отметки в 11 Вольт, контроллер останавливает работу электростанции.

Солнечные батареи состоят из нескольких отдельных панелей. Чтобы увеличить выходные параметры системы в виде мощности, напряжения и тока, элементы присоединяют друг к другу, применяя законы физики.

Соединение нескольких панелей между собой можно выполнить, применив одну из трех схем монтажа солнечных батарей:

  • параллельная;
  • последовательная;
  • смешанная.

Параллельная схема предполагает подключение одноименных клемм друг к другу, при котором элементы имеют два общих узла схождения проводников и их разветвления.

Вариант исполнения параллельной схемы

При параллельной схеме «плюсы» соединяются с «плюсами», а «минусы» с «минусами», в результате чего выходной ток увеличивается, а напряжение на выходе остается в пределах 12 Вольт

Величина максимально возможного тока на выходе при параллельной схеме прямо пропорциональна количеству подключенных элементов. Принципы расчета количества приведены в рекомендуемой нами статье.

Последовательная схема предполагает подключение противоположных полюсов: «плюс» первой панели к «минусу» второй. Оставшийся незадействованный «плюс» второй панели и «минус» первой батареи подключают к расположенному дальше по схеме контроллеру.

Такой вид соединения создает условия для протекания электрического тока, при котором остается единственный путь для передачи энергоносителя от источника к потребителю.

Особенность подключения при последовательной схеме

При последовательной схеме подключения напряжение на выходе увеличивается и достигает отметки в 24 Вольт, чего бывает достаточно для запитки портативной техники, светодиодных ламп и некоторых электроприемников

Последовательно-параллельную или смешанную схему чаще всего используют при необходимости соединения нескольких групп батарей. Посредством применения этой схемы на выходе можно увеличить и напряжение и ток.

Такой вариант выгоден и в том плане, что в случае выхода из строя одного из конструктивных элементов системы, другие связующие цепи продолжают функционировать. Это существенно повышает надежность работы всей системы.

Как работает смешанная схема

При последовательно-параллельной схеме подключения напряжение на выходе достигает отметки, характеристики которой наиболее подходят для решения основной массы бытовых задач

Принцип сборки комбинированной схемы построен на том, что устройства внутри каждой группы соединяются параллельно. А подключение всех групп в одну цепь осуществляется последовательно.

Комбинируя разные типы соединений, не составит труда собрать батарею с необходимыми параметрами. Главное – число соединенных элементов должно быть таким, чтобы подводимое к аккумуляторам рабочее напряжение с учетом его падения в зарядной цепи превышало напряжение самих аккумуляторов, а нагрузочный ток батареи при этом обеспечивал необходимую величину зарядного тока.

Энергию солнца можно преобразовать в тепловую, когда энергоносителем является жидкость-теплоноситель или в электрическую, собираемую в аккумуляторах. Батарея представляет собой генератор, работающий на принципе фотоэлектрического эффекта.

Преобразование энергии солнца в электроэнергию происходит после попадания солнечных лучей на пластины-фотоэлементы, которые являются основной частью батареи.

При этом световые кванты “отпускают” свои электроны с крайних орбит. Эти свободные электроны дают электрический ток, который проходит через контроллер и скапливается в аккумуляторе, а оттуда поступает энергопотребителям.

В роли пластин-фотоэлементов выступают элементы из кремния. Кремниевая пластина с одной стороны покрыта тончайшим слоем фосфора или бора – пассивного химического элемента.

В этом месте под действием солнечных лучей высвобождается большое количество электронов, которые удерживаются фосфорной плёнкой и не разлетаются.

На поверхности пластины имеются металлические “дорожки”, на которых выстраиваются свободные электроны, образуя упорядоченное движение, т.е. электрический ток.

Выбрав место для размещения солнечной панели и оборудования для обслуживания гелиосистемы, а также имея в наличии все требуемые материалы и инструменты, можно начинать монтаж батареи.

При монтаже необходимо соблюдать технику безопасности, особенно осуществляя установку готовой панели на крышу дома. Рассмотрим пошаговый алгоритм, как сделать солнечную батарею.

Солнечные батареи для дома своими руками: как сделать, схемы и все нюансы

Монтаж самодельной солнечной батареи часто начинается с пайки проводников фотоэлементов. Безусловно, если у вас есть возможность, то лучше всего купить фотоэлементы сразу с проводниками, т.к. пайка – очень непростая и кропотливая работа, занимающая много времени.

Пайка осуществляется следующим образом:

  1. Берётся кремниевый фотоэлемент без проводников и металлическая полоса-проводник.
  2. Проводники нарезаются при помощи картонной заготовки, их длина в 2 раза больше, чем размер кремниевой пластины.
  3. Проводник аккуратно выкладывается на пластину. На один элемент – два проводника.
  4. На место, где будет производиться спайка, необходимо нанести кислоту для работы с паяльником.
  5. Произвести пайку при помощи паяльника, аккуратно присоединив проводник к пластине.

В процессе пайки нельзя давить на силикатный элемент, т.к. он очень хрупкий и может разрушиться! Если вам посчастливилось, и вы приобрели фотоэлементы с готовыми контактами, то вы избавите себя от долгой и сложной работы, переходя сразу к изготовлению каркаса для будущей батареи.

Пайка контактов на фотоэлементах группы В

Пайка контактов для бракованных фотоэлементов группы В производится так же и в том же направлении, что и для целых пластин

Каркас – это место, куда будут устанавливаться фотоэлементы. Для изготовления каркаса берутся алюминиевые уголки и рейки, из которых складываются рамки. Рекомендуемый размер уголка – 70-90 мм.

На внутреннюю часть металлических уголков наносится силиконовый герметик. Герметизацию уголков необходимо произвести тщательно, от этого зависит долговечность всей конструкции.

Солнечные батареи для дома своими руками: как сделать, схемы и все нюансы

После того, как алюминиевая рамка готова, приступаем к изготовлению заднего корпуса. Задний корпус представляет собой деревянный ящик из ДСП с невысокими бортиками.

Высокие борта будут создавать тень на фотоэлементах, поэтому их высота не должна превышать 2 см. Бортики привинчиваются при помощи саморезов и шуруповёрта.

Виды солнечных модулей-панелей

Гелиопанели-модули собираются из солнечных элементов, иначе – фотоэлектрических преобразователей. Массовое применение нашли ФЭП двух видов.

Они отличаются используемыми для их изготовления разновидностями полупроводника из кремния, это:

  • Поликристаллические. Это солнечные элементы, изготовленные из кремниевого расплава путем длительного охлаждения. Несложный метод производства обуславливает доступность цены, но производительность поликристаллического варианта не превышает 12%.
  • Монокристаллические. Это элементы, полученные в результате нарезки на тонкие пластины искусственно выращенного кремниевого кристалла. Самый продуктивный и дорогой вариант. Средний КПД в районе 17 %, можно найти монокристаллические фотоэлементы с более высокой производительностью.
Читать далее:  Скважина своими руками без оборудования

Поликристаллические солнечные элементы плоской квадратной формы с неоднородной поверхностью. Монокристаллические разновидности выглядят как тонкие однородной поверхностной структуры квадраты со срезанными углами (псевдоквадраты).

Так выглядят ФЭП – фотоэлектрические преобразователи

Так выглядят ФЭП – фотоэлектрические преобразователи: характеристики солнечного модуля не зависят от разновидности применяемых элементов – это влияет лишь на размеры и цену

Панели первого исполнения при одинаковой мощности больше размером, чем вторые из-за меньшей эффективности (18% против 22%). Но процентов, в среднем, на десять дешевле и пользуются преимущественным спросом.

О правилах и нюансах выбора солнечных батарей для снабжения энергией автономного отопления вы сможете прочитать здесь.

Что лучше: однотрубная или двухтрубная структура?

Питание приборов осуществляется по однотрубной или двухтрубной схеме. В первом случае нагревательные приборы подсоединяются последовательно, а во втором параллельно. Принципиальная разница заключается в наличии в двухтрубной системе двух типов трубопроводов: для подачи теплоносителя в радиаторы и для возврата в котёл.

1 — однотрубное последовательное подключение радиаторов без байпаса; 2 — однотрубное подключение с байпасом; 3 — двухтрубное подключение с укладкой по периметру здания труб подачи и обратки; 4 — коллекторная «лучевая» схема включения

Самодельная солнечная батарея

Однотрубные системы хорошо работают только в небольших домах с количеством радиаторов от 6 до 10 на одной ветке. В остальных случаях они малоэффективны из-за неравномерного распределения температуры теплоносителя на входе в радиаторы.

Двухтрубные системы более универсальны и дают больше возможностей для регулирования теплового режима. С помощью термостатических вентилей можно настроить комфортную теплоотдачу каждого радиатора, не влияя на работу остальных.

Первое, что необходимо сделать перед тем, как установить и подключить солнечную батарею – определиться с местом размещения агрегата.

Варианты размещения фотоэлектрических модулей

Для установки фотоэлектрических модулей удобно использовать стационарные конструкции, выполненные из металлических профилей, либо же более модернизированные поворотные аналоги

Солнечные батареи можно размещать практически в любой хорошо освещаемой точке:

  • на крыше загородного коттеджа;
  • на балконе многоквартирного дома;
  • на прилегающей к дому территории.

Главное – обеспечить необходимые условия для получения максимальной выработки электроэнергии. Одним из таковых является ориентация и угол наклона относительно горизонта. Так светопоглощающая поверхность агрегата должна быть направлена в южную сторону.

В идеале солнечные лучи должны падать на нее под 90°. Чтобы добиться этого эффекта, необходимо подобрать оптимальный угол уклона в зависимости от климатических условий региона. Для каждого региона этот показатель свой.

Необходимость изменения угла наклона

Чтобы обеспечить максимальную производительность солнечных батарей, угол наклона устройств рекомендуется менять 2-4 раза в год: 18 апреля, 24 августа, 7 октября и 5 марта

К примеру, в московском регионе угол наклона размещения поверхности солнечных батарей для летних месяцев составляет 15-20°, а в зимние месяцы изменяется до отметки в 60-70°.

При размещении солнечных батарей на прилегающей к дому территории, панели лучше приподнять над поверхностью почвы как минимум на полметра – на случай выпадения большого количества снега. Такое решение правильно и в том плане, что обеспечивает достаточное расстояние для циркуляции воздуха.

Стоит помнить, что даже небольшая тень пагубно влияет на выработку электричества агрегатом. Панели нужно размещать лишь в местах, которые не подвержены даже малейшему затенению.

Стекло – защита или преграда

Некоторые «умельцы» с целью защиты батарей устанавливают сверху панелей дополнительное стекло, но даже при видимой прозрачности стеклянная прослойка способна снизить КПД панелей на 30%

Существует несколько способов фиксации панелей:

  • посредством задействования прижимных фиксаторов;
  • путем болтового соединения через сквозные отверстия, расположенные в нижней части рамки.

Опорная конструкция должна быть выполнена из корозионностойких материалов. Независимо от способа монтажа в конструкцию панелей нельзя самостоятельно вносить изменения и просверливать дополнительные отверстии.

Задача домовладельца – поддерживать панели в чистом виде. Скопления на экране пыли, снега и птичьего помета как минимум на 10% уменьшает количество электроэнергии, произведенной системой.

Коротко об устройстве и работе

Они способны полностью обеспечить горячее водоснабжение и отопление в холодное время года только в южных регионах. И то, если занимают достаточно большую площадь и установлены на открытых, не затененных деревьями площадках.

Несмотря на большое количество разновидностей, принцип работы у них одинаковый. Любая гелиосистема представляет собой контур с последовательным расположением приборов, и поставляющих тепловую энергию, и передающих ее потребителю.

Основными рабочими элементами являются солнечные батареи на фотоэлементах или солнечные коллекторы.  Технология сборки солнечного генератора на фотопластинах несколько сложнее, чем трубчатого коллектора.

В этой статье мы рассмотрим второй вариант – коллекторную гелиосистему.

Для чего нужен солнечный коллектор

Солнечные коллекторы пока служат вспомогательными поставщиками энергии. Полностью переключать отопление дома на гелиосистему опасно из-за невозможности прогнозировать четкое количество солнечных дней

Коллекторы представляют собой систему трубок, соединенных последовательно с выходной и входной магистралью или выложенных в виде змеевика. По трубкам циркулирует техническая вода, воздушный поток или смесь воды с какой-либо незамерзающей жидкостью.

Солнечные батареи для дома своими руками: как сделать, схемы и все нюансы

Циркуляцию стимулируют физические явления: испарение, изменение давления и плотности от перехода из одного агрегатного состояния в другое и др.

Как можно сделать солнечный коллектор своими руками

Принцип действия солнечных коллекторов основан на получении и накапливании солнечной энергии, сообщаемой теплоносителю ( )

Сбор и аккумуляция солнечной энергии производится абсорберами. Это либо сплошная металлическая пластина с зачерненной наружной поверхностью, либо система отдельных пластин, присоединенных к трубкам.

Для изготовления верхней части корпуса, крышки, используются материалы с высокой способностью к пропусканию светового потока. Это может быть оргстекло, подобные полимерные материалы, закаленные виды традиционного стекла.

Устройство солнечного коллектора

Для того чтобы исключить потери энергии с тыльной стороны прибора в короб укладывается теплоизоляция

Надо сказать, что полимерные материалы довольно плохо переносят влияние ультрафиолетовых лучей. Все виды пластика имеют достаточно высокий коэффициент теплового расширения, что часто приводит к разгерметизации корпуса. Поэтому использование подобных материалов для изготовления корпуса коллектора стоит ограничить.

Вода в качестве теплоносителя может применяться только в системах, предназначенных для поставки дополнительного тепла в осенне/весенний период. Если планируется круглогодичное использование гелиосистемы перед первым похолоданием техническую воду меняют на смесь ее с антифризом.

Как сделать воздушный гелиоколлектор

В воздушных гелиосистемах в качестве теплоносителя используется воздух. Каналы для его движения можно сделать из обычного профлиста ( )

Если солнечный коллектор устанавливается для обогрева небольшого строения, не имеющего связи с автономным отоплением коттеджа или с централизованными сетями, сооружается простейшая одноконтурная система с нагревательным прибором в начале ее.

Солнечные батареи для дома своими руками: как сделать, схемы и все нюансы

В цепочку не включают циркуляционные насосы и нагревательные устройства. Схема предельно проста, но работать она может лишь солнечным летом.

При включении коллектора в двухконтурное техническое сооружение все гораздо сложнее, но и диапазон пригодных для применения дней существенно увеличен. Коллектор обрабатывает только один контур. Преобладающая нагрузка возлагается на основной отопительный агрегат, работающий на электроэнергии или любом виде топлива.

Как правильно сделать солнечный коллектор своими руками

Для изготовления солнечного коллектора можно воспользоваться готовой схемой, можно построить собственную пилотную модель и опробовать ее на практике ( )

Несмотря на прямую зависимость производительности солнечных приборов от количества солнечных дней, они востребованы, и спрос на солнечные устройства стабильно повышается. Популярны они среди народных умельцев, стремящихся направить все виды природной энергии в полезное русло.

Секции укладываются на стекло подложкой кверху и спаиваются между собой и диодами согласно выбранной схеме последовательно-параллельного подключения. Для фиксации фотоэлементов на месте, а также закрепления проводников и диодов можно использовать прозрачный термоклей или бескислотный уксусный герметик.

После того, как все фотоэлементы размещены, закреплены и спаяны, к выводам припаивается более толстый силовой провод – в нашем случае будет достаточно сечения 1,5 мм2. Он пропускается через отверстие в рамке, которую проще всего сделать из пропитанной олифой деревянной рейки. Метод закрепления стекла в рамке может быть различным:

  • Укладка в паз с последующим закреплением штапиком (наподобие тому, как это делается в оконных рамах);
  • Размещение между двумя рамками с последующей их стяжкой саморезами;

В любом случае, учитывая склонность дерева «дышать», нужно применять при укладе стекла незатвердевающий герметик.

Вместо дерева можно использовать более совершенные материалы при их доступности: алюминиевый уголок, металлопрофиль, использующийся при изготовлении стеклопакетов и так далее.

Стыки конструкции рамки, а также место вывода проводов необходимо дополнительно залить герметиком. После вторичной проверки всех соединений залейте фотоэлементы прозрачным лаком, чтобы полностью загерметизировать и скрепить сборку. После высыхания лака к рамке можно прикрепить заднюю стенку из любого подходящего материала, желательно из полимера наподобие поликарбоната. Пространство между стенкой и залитыми фотоэлементами лучше всего залить доступным компаундом, например – эпоксидной смолой.

Крепить получившуюся батарею, учитывая ее достаточно большую массу, необходимо как минимум в четырех углах рамки. Лучший способ усиления конструкции – собрать вторую рамку из стального уголка таким образом, чтобы солнечная панель достаточно плотно встала в нее, а затем саморезами скрепить их по периметру.

Наиболее оптимальный вариант стационарного размещения батареи – горизонтальный или с небольшим уклоном для стока осадков. В этом случае «электростанция» будет иметь максимальный КПД в полдень, когда влияние погоды и посторонних помех на мощность падающего солнечного излучения минимально. Максимальную токоотдачу в течение длительного времени можно обеспечить, предусмотрев возможность наклона панели вдоль хода солнца хотя бы вручную.

Когда проводишь взглядом по загадочно звучащим названиям узлов, входящих в состав системы питания солнечным светом, приходит мысль о супертехнической сложности устройства.

На микроуровне жизни фотона это так. А наглядно общая схема электрической цепи и принцип ее действия выглядят очень даже просто. От светила небесного до «лампочки Ильича» всего четыре шага.

Солнечные модули – первая составляющая электростанции. Это тонкие прямоугольные панели, собранные из определенного числа стандартных пластин-фотоэлементов. Производители делают фотопанели различными по электрической мощности и напряжению, кратному 12 вольтам.

Устройства плоской формы удобно располагаются на открытых для прямых лучей поверхностях. Модульные блоки объединяются при помощи взаимных подключений в гелиобатарею. Задача батареи преобразовывать получаемую энергию солнца, выдавая постоянный ток заданной величины.

Устройства накопления электрического заряда – аккумуляторы для солнечных батарей известны всем. Роль их внутри системы энергоснабжения от солнца традиционна. Когда домашние потребители подключены к централизованной сети, энергонакопители запасаются электричеством.

Они также аккумулируют его излишки, если для обеспечения расходуемой электроприборами мощности достаточно тока солнечного модуля.

Аккумуляторный блок отдает цепи требуемое количество энергии и поддерживает стабильное напряжение, как только потребление в ней возрастает до повышенного значения. То же происходит, например, ночью при неработающих фотопанелях или во время малосолнечной погоды.

Применение солнечных батарей в энергообеспечении дома

Схема энергообеспечения дома с помощью солнечных батарей отличается от вариантов с коллекторами возможностью накапливать энергию в аккумуляторе

Контроллер – электронный посредник между солнечным модулем и аккумуляторами. Его роль регулировать уровень заряда аккумуляторных батарей. Прибор не допускает их закипания от перезарядки или падения электрического потенциала ниже определенной нормы, необходимой для устойчивой работы всей гелиосистемы.

Переворачивающий, так дословно объясняется звучание термина инвертор для солнечных батарей. Да, ведь на самом деле, этот узел выполняет функцию, когда-то казавшуюся электротехникам фантастикой.

  • Отопительное оборудование – котел (газовый, жидко- или твердотопливный), печь, камин.
  • Замкнутый контур в виде трубопровода, обеспечивающий непрерывную циркуляцию  нагретого и остывшего теплоносителя (антифриза).
  • Приборы отопления – металлические ребристые, панельные или гладкотрубные радиаторы, конвекторы, трубопроводы водяных теплых полов.
  • Запорная арматура, необходимая для отключения отдельных приборов или линий системы для ремонта и обслуживания;
  • приборы для регулировки и контроля за работой системы (расширительный бак, манометр, клапаны сброса и др.).
  • Циркуляционные насосы, применяемые для создания принудительной подачи теплоносителя, иногда для обеспечения стабильного давления в системе устанавливается повысительный насос.

Пиковая нагрузка и среднесуточное энергопотребление

Удовольствие иметь собственную гелиостанцию стоит пока немало. Первая ступень на пути к обладания могуществом энергии солнца – определение оптимальной пиковой нагрузки в киловаттах и рационального среднесуточного энергопотребления в киловатт-часах домашнего или дачного хозяйства.

Пиковая нагрузка создается необходимостью включения сразу нескольких электрических приборов и определяется их максимальной суммарной мощностью с учетом завышенных пусковых характеристик некоторых из них.

Подсчет максимума потребляемой мощности позволяет выявить, жизненно нужна одновременная работа каких электроприборов, а которых не очень. Такому показателю подчиняются мощностные характеристики узлов электростанции, то есть итоговая стоимость устройства.

Суточное энергопотребление электроприбора измеряется произведением его индивидуальной мощности на время, что он проработал от сети (потреблял электроэнергию) в течение суток. Общее среднесуточное энергопотребление рассчитывается как сумма израсходованной энергии электричества каждым потребителем за суточный период.

Несколько советов по рациональному энергопотреблению

Последующий анализ и оптимизация полученных данных о нагрузках и энергопотреблении обеспечат нужную комплектацию и последующую работу солнечной энергосистемы с минимальными затратами

Результат потребления энергии помогает рационально подойти к расходу солнечного электричества. Итог вычислений важен для дальнейшего расчета емкости аккумуляторов. От этого параметра цена аккумуляторного блока, немало стоящего компонента системы, зависит еще больше.

Порядок расчета энергетических показателей

Процесс вычислений в буквальном смысле начинается с горизонтально расположенного, в клеточку, развернутого тетрадного листа. Легкими карандашными линиями из листка получается бланк с тридцатью графами, а строками по количеству домашних электроприборов.

Первая колонка чертится традиционная – порядковый номер. Второй столбик – наименование электроприбора. Третий – его индивидуальная потребляемая мощность.

Столбцы с четвертого по двадцать седьмой – часы суток от 00 до 24. В них через горизонтальную дробную черту заносятся:

  • в числитель – время работы прибора в период конкретного часа в десятичном виде (0,0);
  • в знаменатель – вновь его индивидуальная потребляемая мощность (это повторение нужно для подсчета часовых нагрузок).

Двадцать восьмая колоночка – суммарное время, которое работает бытовое устройство в течение суток. В двадцать девятую – записывается персональное энергопотребление прибора как результат умножения индивидуальной потребляемой мощности на время работы за суточный период.

Таблица примерных мощностей домашних электроприборов

Составление развернутой спецификации потребителей с учетом почасовых нагрузок поможет оставить больше привычных приборов, благодаря их рациональному использованию

Солнечные батареи для дома своими руками: как сделать, схемы и все нюансы

Тридцатая колонка тоже стандартная – примечание. Она пригодится для промежуточных подсчетов.

Следующий этап расчетов – превращение тетрадного бланка в спецификацию бытовых потребителей электроэнергии. С первой колонкой понятно. Здесь проставляются порядковые номера строк.

Во втором столбике вписываются наименования потребителей энергии. Рекомендуется начинать заполнение электроприборами прихожей. Далее описываются другие помещения против или по часовой стрелке (кому как удобно).

Если есть второй (и т.д.) этаж, процедура та же: от лестницы – вкруговую. При этом не надо забывать про приборы на лестничных пролетах и уличное освещение.

Третью графу с указанием мощности напротив названия каждого электрического прибора лучше наполнять попутно со второй.

Столбцы с четвертого по двадцать седьмой соответствуют всякий своему часу суток. Для удобства их сразу можно прочеркнуть горизонтальными линиями посередине строк. Полученные верхние половины строчек – как бы числители, нижние – знаменатели.

Эти столбцы заполняются построчно. Числители выборочно оформляются как временные интервалы десятичного формата (0,0), отражающие время работы данного электроприбора в тот или иной конкретный часовой период. Параллельно там, где проставляются числители, вписываются знаменатели с показателем мощности прибора, взятой из третьей графы.

После того как все часовые столбцы заполнены, переходят к подсчетам индивидуального суточного рабочего времени электроприборов, двигаясь по строчкам. Результаты фиксируются в соответствующих ячейках двадцать восьмой колоночки.

Таблица режимов круглосуточного автономного электроснабжения

В случае, когда солнечная электростанция играет вспомогательную роль, чтобы система не работала вхолостую, часть нагрузки можно подключить к ней на постоянное питание

На основе мощности и рабочего времени последовательно вычисляется суточное энергопотребление всех потребителей. Оно отмечается в ячеях двадцать девятого столбика.

Солнечный водонагреватель на крыше

Когда все строки и столбики спецификации заполнены, производят расчеты итогов. Складывая пографно мощности из знаменателей часовых столбцов, получают нагрузки каждого часа. Просуммировав сверху вниз индивидуальные суточные энергопотребления двадцать девятой колоночки, находят общее среднесуточное.

Расчет не включает собственное потребление будущей системы. Этот фактор учитывается вспомогательным коэффициентом при последующих итоговых вычислениях.

Если питание от гелиоэлектростанции планируется как резервное, данные о почасовых потребляемых мощностях и об общем среднесуточном энергопотреблении помогают минимизировать расход дорогого солнечного электричества.

Этого добиваются, исключая из пользования энергоемкие потребители до момента восстановления централизованного электроснабжения, особенно в часы максимальных нагрузок.

Если солнечная энергосистема проектируется как источник постоянного электрообеспечения, тогда результаты часовых нагрузок выдвигаются вперед. Важно так распределить потребление электричества в течение суток, чтобы убрать намного преобладающие максимумы и сильно проваливающиеся минимумы.

Исключение пиковой, выравнивание максимальных нагрузок, устранение резких провалов энергопотребления во времени позволяют подобрать наиболее экономичные варианты узлов солнечной системы и обеспечивают стабильную, главное, безаварийную долговременную работу гелиостанции.

Реальный и рациональный графики почасового энергопотребления

График раскроет неравномерность энергопотребления: наша задача – сдвинуть максимумы на время наибольшей активности солнца и уменьшить общий суточный расход, особенно ночной.

Представленный чертеж показывает превращение полученного на основе составленной спецификации нерационального графика в оптимальный. Показатель суточного потребления снижен с 18 до 12 кВт/ч, среднесуточная почасовая нагрузка с 750 до 500 Вт.

Солнечные батареи для дома своими руками: как сделать, схемы и все нюансы

Такой же принцип оптимальности пригодится при использовании варианта питания от солнца в качестве резервного. Излишне тратиться на увеличение мощности солнечных модулей и аккумуляторных батарей ради некоторого временного неудобства, возможно не стоит.

Типы подключения радиаторов

Применяя последовательную схему монтажа солнечных батарей, чтобы не снизить эффективность работы устройств, все панели общей цепи следует размещать под одним углом и на одной плоскости.

Если же панели будут располагаться в различных плоскостях, это может привести к тому, что ближняя или более освещенная станет работать мощнее расположенных чуть дальше.

Это значит, что ближняя панель будет генерировать электричество, часть которого будет отходить для нагрева дальних панелей. И причина кроется в том, что ток течет по пути наименьшего сопротивления. Чтобы минимизировать потери, для каждой панели лучше задействовать отдельный контроллер.

Как соединить разнонаправленные элементы

Основные требования при задействовании контроллера – мощность подключаемых панелей свыше 1 кВт и удаленность между батареями на достаточно большое расстояние

Решить вопрос можно и путем установки отсекающих диодов. Их размещают внутри между пластинами. Благодаря этому, выдавая максимальный показатель мощности, пластины не перегреваются.

Читать далее:  Большой обзор по процессам сероочистки газа

Немаловажное значение имеет и падение напряжения в соединениях, а также самих проводах низковольтной части системы.

Таблица зависимости падения напряжения

Таблица несоответствия передаваемой мощности сечению провода, красным указывающая параметры, при которых возникает риск сильного пожароопасного нагрева

В качестве примера может служить тот факт, что на метровый отрезок кабеля сечением 4 мм2 при прохождении тока показателем 80А (напряжение 12 В) значения падают на 3,19%, что составляет 30,6 Вт. При задействовании скруток падение напряжения может варьироваться в пределах от 0,1 до 0,3 В.

Схема подключения отопительных приборов выбирается исходя из выбранной структуры системы отопления, удобства прокладки и обслуживания, а также особенностей интерьера.

1 — Двухтрубная разводка. 2 — Однотрубная разводка

На рисунке показаны основные варианты присоединения радиаторов, характерные для вертикальных систем.

А — боковое подключение; Б — диагональное; В — нижнее одключение

Для чего нужен солнечный коллектор

Анализ схем, которые наиболее часто встречаются в горизонтальных системах, показывает, что тип подключения радиаторов оказывает значительное влияние на эффективность теплоотдачи. Прежде, чем отдать предпочтение более удобному в монтаже варианту, стоит хорошо подумать, готовы ли вы пожертвовать частью драгоценного тепла.

Как видно из всего, изложенного выше, выбор схемы водяного отопления для частного дома связан с необходимостью тщательного анализа множества вариантов. Кроме описанных основных разновидностей, существует ещё более подробная классификация. Консультация квалифицированного специалиста поможет быстрее сориентироваться во всём многообразии, учесть имеющиеся нюансы и достичь наилучших результатов.

рмнт.ру

04.05.17

Подбор узлов гелиоэлектростанции

Основа панели – это сборка фотоэлементов. Так как для получения достаточной мощности нам потребуется достаточно большое их количество, стоит рассмотреть наиболее дешевые источники, в роли которых традиционно выступают Ebay и Aliexpress. Нужный товар ищется по запросу “solar cell”.

В среднем готовая тонкопленочная сборка под напряжение 12 В и ток 100 мА стоит в Китае около 200-300 рублей, ее размеры составят около 85×115 мм. Можно встретить также как меньшие сборки (на 5, 6 вольт), так и отдельные фотоэлементы (их рабочее напряжение – 0,5 В). В любом случае их придется комбинировать, чтобы получить нужное напряжение и мощность. Для этого будет необходимо скомбинировать последовательное и параллельное подключение фотоэлементов.

  • Соединяя фотоэлементы последовательно, мы не изменяем максимальный ток, который может отдать сборка, но увеличиваем напряжение на ее выходах: к примеру, сборка из 6 поликристаллических фотоэлементов (напомним, рабочее напряжение каждого – 0,5 В) будет выдавать 3 В.
  • Соединяя фотоэлементы параллельно, мы увеличиваем токоотдачу сборки, сохраняя ее рабочее напряжение. При этом важно, чтобы каждая секция имела одинаковое количество элементов.

На приведенном выше рисунке отображен принцип соединения фотоэлементов. Каждый из них имеет напряжение в 0,5В; сборка из двух фотоэлементов SB2 и SB3 выдает нам 1В, сборка из трех – 1,5В, параллельное подключение второй секции не изменяет напряжение.

Также по схеме видно, что каждая из параллельно соединенных секций подключена к нагрузке через диод. Это необходимо для того, чтобы избежать потери тока через менее освещенные секции (например, половину батареи закрыла тень), а также не дать аккумуляторам разряжаться ночью. Для обеспечения максимального КПД нам понадобятся диоды с минимальным прямым падением напряжения (так называемые диоды Шоттки). Их нужно подбирать с учетом полуторакратного запаса по обратному напряжению и току.

При выборе фотоэлементов предпочтите уже имеющие готовые площадки для пайки, сборка панели в этом случае будет гораздо проще. Также можно увидеть в продаже солнечные батареи без площадок для пайки: их нужно собирать с использованием токопроводящих шин из медной фольги, это менее удобный способ.

Итак, определившись с типом используемых элементов, можно приступить к расчету конструкции панели. Например, мы выбрали сборку из одиночных (0,5В) фотоэлементов с номинальным током 100 мА, рассчитывая на зарядку аккумулятора 12В током до 6 А. Следовательно, нам понадобится 6/0,1=60 секций по 12/0,5=24 фотоэлемента, итого 1440 фотоэлементов. Также потребуется 60 барьерных диодов.

Сами фотоэлементы необходимо будет разместить под прозрачным листом, который будет защищать их от механических повреждений. Лучше использовать толстое (3-4 мм) минеральное стекло, а не органическое, так как, несмотря на большую массу и стоимость, оно не мутнеет и не царапается.

60 таких секций разумнее всего расположить в порядке 5х12, таким образом общие размеры панели составят 1060х1296 мм. При этом нужно учесть припуск на бортики панели в зависимости от их конструкции.

На видео показан процесс постройки с комментариями

Для упрощения расчетов будет рассматриваться версия применения солнечной батареи как основного для дачи источника электрической энергии. Потребителем выступит условный дачный домик в Рязанской области, где постоянно проживают с марта по сентябрь.

Наглядности рассуждениям придадут практические вычисления, основывающиеся на данных опубликованного выше рационального графика почасового энергопотребления:

  • Общее среднесуточное энергопотребление = 12 000 ватт/час.
  • Средняя нагрузка потребления = 500 ватт.
  • Максимальная нагрузка 1200 ватт.
  • Пиковая нагрузка 1200 х 1,25 = 1500 ватт ( 25%).

Значения потребуются в расчетах суммарной емкости солнечных приборов и прочих рабочих параметров.

Шаг 1: Сборка коллектора из гофрированной трубы

Внутреннее рабочее напряжения всякой гелиосистемы основывается на кратности 12 вольтам, как самого распространенного номинала аккумуляторных батарей. Наиболее широко узлы гелиостанций: солнечные модули, контроллеры, инверторы – выпускаются под популярные напряжения 12, 24, 48 вольт.

Более высокое напряжение позволяет использовать питающие провода меньшего сечения – а это повышенная надежность контактов. С другой стороны, вышедшие из строя аккумуляторы сети 12В, можно будет заменять по одному.

В 24-вольтовой сети, рассматривая специфику эксплуатации аккумуляторных батарей, придется производить замену только парами. Сеть 48V потребует смены всех четырех батарей одной ветки. К тому же, при 48 вольтах уже существует опасность поражения электрическим током.

Сборки веток аккумуляторов блоков разного напряжения

При одинаковой емкости и примерно равной цене следует приобретать аккумуляторы с наибольшей допустимой глубиной разряда и более максимальным током

Главный выбор номинала внутренней разности потенциалов системы связан с мощностными характеристиками выпускаемых современной промышленностью инверторов и должен учитывать величину пиковой нагрузки:

  • от 3 до 6 кВт – 48 вольт,
  • от 1,5 до 3 кВт – равен 24 или 48V,
  • до 1,5 кВт – 12, 24, 48В.

Выбирая между надежностью проводки и неудобством замены аккумуляторов, для нашего примера остановимся на надежности. В последующем будем отталкиваться от рабочего напряжения рассчитываемой системы 24 вольта.

Шаг 2: Окрашивание солнечного прибора в черный цвет

Рсм = ( 1000 * Есут ) / ( к * Син ),

  • Рсм = мощность солнечной батареи = суммарная мощность солнечных модулей (панелей, Вт),
  • 1000 = принятая светочувствительность фотоэлектрических преобразователей (кВт/м²)
  • Есут = потребность в суточном энергопотреблении (кВт*ч, в нашем примере = 18),
  • к = сезонный коэффициент, учитывающий все потери (лето = 0,7; зима = 0,5),
  • Син = табличное значение инсоляции (потока солнечной радиации) при оптимальном наклоне панелей (кВт*ч/м²).

Узнать значение инсоляции можно у региональной метеорологической службы.

Оптимальный угол наклона солнечных панелей равен значению широты местности:

  • весной и осенью,
  • плюс 15 градусов – зимой,
  • минус 15 градусов – летом.

Рассматриваемая в нашем примере Рязанская область находится на 55-й широте.

Карта инсоляции – потока солнечной радиации России

Наибольшая мощность солнечных батарей достигается использованием систем слежения, сезонным изменением угла наклона панелей, применением смешанного дифферента модулей

Рсм = 1000 * 12 / ( 0,7 * 4,73 ) ≈ 3 600 ватт.

Если брать за основу солнечной батареи 100-ваттные модули, то потребуется их 36 штук. Будут весить они килограмм 300 и займут площадь размером где-то 5 х 5 м.

Шаг 3: Установка подводов для воздуха

Проверенные на практике монтажные схемы и варианты подключения солнечных батарей приведены здесь.

Подбирая аккумуляторные батареи, нужно руководствоваться постулатами:

  1. НЕ подходят для этой цели обычные автомобильные аккумуляторы. Батареи солнечных электростанций маркируются надписью «SOLAR».
  2. Приобретать аккумуляторы следует только одинаковые по всем параметрам, желательно, из одной заводской партии.
  3. Помещение, где размещается аккумуляторный блок, должно быть теплым. Оптимальная температура, когда батареи выдают полную мощность = 25⁰C. При ее снижении до -5⁰C емкость аккумуляторов уменьшается на 50%.

Если взять для расчета показательный аккумулятор напряжением 12 вольт емкостью 100 ампер/час, несложно подсчитать, целый час он сможет обеспечить энергией потребителей суммарной мощностью 1200 ватт. Но это при полной разрядке, что крайне нежелательно.

Для длительной работы аккумуляторных батарей НЕ рекомендуется снижать их заряд ниже 70%. Предельная цифра = 50%. Принимая за «золотую середину» число 60%, кладем в основу последующих вычислений энергозапас 720 Вт/ч на каждые 100 А*ч емкостной составляющей аккумулятора (1200 Вт/ч х 60%).

Пример аккумулятора для обустройства энергоблока

Возможно, покупка одного аккумулятора емкостью 200 А*ч обойдется дешевле приобретения двух по 100, да и количество контактных соединений батарей уменьшится

Первоначально устанавливать аккумуляторы необходимо 100% заряженными от стационарного источника тока. Аккумуляторные батареи должны полностью перекрывать нагрузки темного времени суток. Если не повезет с погодой, поддерживать необходимые параметры системы и днем.

Важно учесть, что переизбыток аккумуляторов приведет к их постоянному недозаряду. Это значительно уменьшит срок службы. Наиболее рациональным решением видится укомплектование блока батареями с энергозапасом, достаточным для покрытия одного суточного энергопотребления.

12 000 / 720 * 100 = 2500 А*ч ≈ 1600 А*ч

Итого для нашего примера потребуется 16 аккумуляторов емкостью 100 или 8 по 200 А*ч, подключенных последовательно-параллельно.

Шаг 4: Изготовление крышки для солнечного прибора

Грамотный подбор контроллера заряда аккумуляторных батарей (АКБ) – задача весьма специфичная. Его входные параметры должны соответствовать выбранным солнечным модулям, а выходное напряжение – внутренней разности потенциалов гелиосистемы (в нашем примере – 24 вольта).

Хорошему контроллеру обязательно надлежит обеспечивать:

  1. Многоступенчатый заряд АКБ, кратно расширяющий их срок эффективной службы.
  2. Автоматическое взаимное, АКБ и солнечной батареи, подключение-отключение в корреляции с зарядом-разрядом.
  3. Переподключение нагрузки с АКБ на солнечную батарею и наоборот.

Этот небольшой по размерам узел – очень важный компонент.

Электросхема взаимного подключения узлов солнечной станции

Если часть потребителей (например, освещение) перевести на прямое питание 12 вольт от контроллера, инвертор понадобится менее мощный, значит более дешевый

Совмещение гелиоэнергии и стационарной сети

Планируя использовать электроэнергию от солнца параллельно с обустроенной централизованной стационарной сетью, схему подключения делают несколько иной. И основная причина такого решения в том, что у частного потребителя нет возможности «сбрасывать» оставшуюся энергию.

А это может спровоцировать перепады напряжения длительностью до одной секунды.

Как правильно совместить системы

При совмещении солнечной электроэнергии со стационарной централизованной сетью руководствуются все тем же правилом: чем больше источников подключается, тем сложнее становится схема

Согласно выше приведенной схеме, напряжение от гелиополя первым делом направляется в сторону АКБ, а уже оттуда и передается на нагрузку.

Проектируя такой вариант монтажа в расчет стоит брать два вида нагрузки:

  • не резервируемая – свет в доме, бытовая техника и пр.;
  • резервируемая – аварийное освещение, холодильник, электрический котел.

Учитывайте: чем больше емкость аккумулятора, тем больше проработают в автономном режиме резервируемые электроприборы.

Выбирая такой способ генерации энергии в сеть, будьте готовы к тому, что придется оформлять разрешение в местных энергосетях.

Несмотря на то, что инверторы для солнечных батарей вырабатывают напряжение, качество которого порой выше того, что в централизованной сети, местные энергосети не дают добро на то, чтобы электросчетчик вращался в обратную сторону.

По этой причине согласно схеме солнечные инверторы прекращают работу в момент пропадания напряжения в сети. А резервируемая нагрузка начинает «запитываться» от АКБ.

Выводы и полезное видео по теме

Рассмотренные пошаговые практические приемы расчетов, основной принцип эффективной работы современной солнечной панельной батареи в составе домашней автономной гелиостанции помогут хозяевам и большого дома густонаселенного района, и дачного домика в глуши обрести энергетическую суверенность.

В интересных видеороликах представлена полезная информация о схемах, составных частях, монтаже жидкостных систем отопления, а также о личном опыте монтажа.

Совет всем, кто хочет самостоятельно оборудовать сложную отопительную систему в загородном доме: при составлении проекта обязательно проконсультируйтесь со специалистом, чтобы после монтажа не столкнуться с непредвиденными обстоятельствами. Сантехники помогут выбрать надежное оборудование, подскажут более эффективную схему разводки, сделают точные расчеты, а результатом станут уют и тепло в доме.

Шаг 1: Сборка коллектора из гофрированной трубы

Естественно, самостоятельно сделанный солнечный коллектор не сможет конкурировать с промышленными моделями. Используя подручные материалы, довольно сложно добиться высокого КПД, которым обладают промышленные образцы. Но и финансовые затраты будут гораздо меньше по сравнению с приобретением готовых установок.

Тем не менее, самодельная солнечная система отопления существенно повысит уровень комфорта и сократит расходы на энергию, которая вырабатывается традиционными источниками.

Авторы видеоматериала, который предоставлен ниже, делятся личным опытом и разбирают нюансы монтажа гелиопанелей.

Ничего сложного в процессе соединения нескольких панелей с другими элементами системы нет. Но для начинающего мастера процесс может стать затруднительным. Поэтому при отсутствии опыта в расчетах и навыков монтажа стоит обратиться к специалисту, владеющему необходимыми знаниями.

Сделать солнечную батарею своими руками – не простая задача. КПД большинства таких батарей ниже, чем у панелей промышленного производства на 10-20%. Самое важное при конструировании солнечной батареи – правильно выбрать и установить фотоэлементы.

Не пытайтесь сразу создать огромную по площади панель. Попробуйте сначала соорудить маленький прибор, чтобы понять все нюансы этого процесса.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
ManRem
Adblock
detector