Гидравлический расчет системы отопления расчет по площади

Исходные данные для теплового расчета системы отопления

Классический тепловой расчёт отопительной системы являет собой сводный технический документ, который включает в себя обязательные поэтапные стандартные методы вычислений.

Но перед изучением этих подсчётов основных параметров нужно определиться с понятием самой системы отопления.

Система отопления характеризуется принудительной подачей и непроизвольным отводом тепла в помещении.

Основные задачи расчёта и проектирования системы отопления:

  • наиболее достоверно определить тепловые потери;
  • определить количество и условия использования теплоносителя;
  • максимально точно подобрать элементы генерации, перемещения и отдачи тепла.

При постройке системы отопления необходимо первоначально произвести сбор разнообразных данных о помещении/здании, где будет использоваться система отопления. После выполнить расчёт тепловых параметров системы, проанализировать результаты арифметических операций.

На основании полученных данных подобирают компоненты системы отопления с последующей закупкой, установкой и вводом в эксплуатацию.

Классический вид отопления

Отопление – это многокомпонентная система обеспечения утверждённого температурного режима в помещении/здании. Являет собой обособленную часть комплекса коммуникаций современного жилищного помещения

Гидравлический расчет системы отопления  расчет по площади

Примечательно, что указанная методика теплового расчёта позволяет достаточно точно вычислить большое количество величин, которые конкретно описывают будущую систему отопления.

В результате теплового расчёта в наличии будет следующая информация:

  • число тепловых потерь, мощность котла;
  • количество и тип тепловых радиаторов для каждой комнаты отдельно;
  • гидравлические характеристики трубопровода;
  • объём, скорость теплоносителя, мощность теплового насоса.

Тепловой расчёт – это не теоретические наброски, а вполне точные и обоснованные итоги, которые рекомендуется использовать на практике при подборе компонентов системы отопления.

В качестве примера теплового расчёта в наличии есть обычный 1-этажный дом с четырьмя жилыми комнатами, кухня, санузел, “зимний сад” и подсобные помещения.

Фасад частного дома

Фундамент из монолитной железобетонной плиты (20 см), наружные стены – бетон (25 см) со штукатуркой, крыша – перекрытия из деревянных балок, кровля – металлочерепица и минеральная вата (10 см)

Обозначим исходные параметры дома, необходимые для проведения расчетов.

Габариты здания:

  • высота этажа – 3 м;
  • малое окно фасадной и тыльной части здания 1470*1420 мм;
  • большое окно фасада 2080*1420 мм;
  • входные двери 2000*900 мм;
  • двери тыльной части (выход на террасу) 2000*1400 (700 700) мм.

Общая ширина постройки 9.5 м2, длинна 16 м2. Отапливаться будут только жилые комнаты (4 шт.), санузел и кухня.

План-схема дома

Для точного расчёта теплопотерь на стенах из площади внешних стен нужно вычесть площадь всех окон и дверей – это совсем другой тип материала со своим тепловым сопротивлением

Начинаем с расчёта площадей однородных материалов:

  • площадь пола – 152 м2;
  • площадь крыши – 180 м2 , учитывая высоту чердака 1.3 м и ширину прогона – 4 м;
  • площадь окон –  3*1.47*1.42 2.08*1.42=9.22 м2;
  • площадь дверей – 2*0.9 2*2*1.4=7.4 м2.

Площадь наружных стен будет равна 51*3-9.22-7.4=136.38 м2.

Переходим к расчёту теплопотерь на каждом материале:

  • Qпол=S*∆T*k/d=152*20*0.2/1.7=357.65 Вт;
  • Qкрыша=180*40*0.1/0.05=14400 Вт;
  • Qокно=9.22*40*0.36/0.5=265.54 Вт;
  • Qдвери=7.4*40*0.15/0.75=59.2 Вт;

А также Qстена эквивалентно 136.38*40*0.25/0.3=4546. Сумма всех теплопотерь будет составлять 19628.4 Вт.

В итоге подсчитаем мощность котла: Ркотла=Qпотерь*Sотаплив_комнат*К/100=19628.4*(10.4 10.4 13.5 27.9 14.1 7.4)*1.25/100=19628.4*83.7*1.25/100=20536.2=21 кВт.

Расчёт количества секций радиаторов произведём для одной из комнат. Для всех остальных вычисления аналогичны. Например, угловая комната (слева, нижний угол схемы) площадь 10.4 м2.

Значит, N=(100*к1*к2*к3*к4*к5*к6*к7)/C=(100*10.4*1.0*1.0*0.9*1.3*1.2*1.0*1.05)/180=8.5176=9.

Для этой комнаты необходимо 9 секций радиатора отопления с теплоотдачей 180 Вт.

Гидравлический расчет системы отопления  расчет по площади

Переходим к расчёту количества теплоносителя в системе – W=13.5*P=13.5*21=283.5 л. Значит, скорость теплоносителя будет составлять: V=(0.86*P*μ)/∆T=(0.86*21000*0.9)/20=812.7 л.

В результате полный оборот всего объёма теплоносителя в системе будет эквивалентен 2.87 раза в один час.

Подборка статей по тепловому расчету поможет определиться с точными параметрами элементов отопительной системы:

  1. Расчет системы отопления частного дома: правила и примеры расчёта
  2. Теплотехнический расчет здания: специфика и формулы выполнения вычислений практические примеры

Некоторые владельцы частных домов или те, кто только собираются их возводить, интересуются тем, есть ли какой-то смысл в тепловом расчете системы отопления? Ведь речь идет о простом загородном коттедже, а не о многоквартирном доме или промышленном предприятии. Достаточно, казалось бы, только купить котел, поставить радиаторы и провести к ним трубы.

С одной стороны, они частично правы – для частных домовладений расчет отопительной системы не является настолько критичным вопросом, как для производственных помещений или многоквартирных жилых комплексов. С другой стороны, существует три причины, из-за которых подобное мероприятие стоит провести. Расчет мощности газового котла отопления- калькулятор, вы можете прочитать в нашей статье.

  1. Тепловой расчет существенно упрощает бюрократические процессы, связанные с газификацией частного дома.
  2. Определение мощности, требуемой для отопления жилья, позволяет выбрать нагревательный котел с оптимальными характеристиками. Вы не переплатите за избыточные характеристики изделия и не будет испытывать неудобств из-за того, что котел недостаточно мощен для вашего дома.
  3. Тепловой расчет позволяет более точно подобрать радиаторы, трубы, запорную арматуру и прочее оборудование для отопительной системы частного дома. И в итоге все эти довольно дорогостоящие изделия проработают столько времени, сколько заложено в их конструкции и характеристиках.

Схема, иллюстрирующая систему отопления частного дома

Прежде чем приступать к подсчетам и работе с данными, их необходимо получить. Здесь для тех владельцев загородных домов, которые прежде не занимались проектной деятельностью, возникает первая проблема – на какие характеристики стоит обратить свое внимание. Для вашего удобства они сведены в небольшой список, представленный ниже.

  1. Площадь постройки, высота до потолков и внутренний объем.
  2. Тип здания, наличие примыкающих к нему строений.
  3. Материалы, использованные при возведении постройки – из чего и как сделаны пол, стены и крыша.
  4. Количество окон и дверей, как они обустроены, насколько качественно утеплены.
  5. Для каких целей будут использоваться те или иные части здания – где будут располагаться кухня, санузел, гостиная, спальни, а где – нежилые и технические помещения.
  6. Продолжительность отопительного сезона, средний минимум температуры в этот период.
  7. «Роза ветров», наличие неподалеку других строений.
  8. Местность, где уже построен или только еще будет возводиться дом.
  9. Предпочтительная для жильцов температура тех или иных помещений.
  10. Расположение точек для подключения к водопроводу, газу и электросети.

Теплопотери в доме

Мероприятия по теплоизоляции, приведенные на изображении выше, помогут существенно уменьшить количество энергии и теплоносителя, необходимого для обогрева жилого дома

Перейдем от быстрых и простых способов расчета к более сложному и точному методу, учитывающему различные факторы и характеристики жилья, для которого проектируется система отопления. Используемая формула похожа по своему принципу на ту, что использовалась для расчета по площади, но дополнена огромным количеством корректирующих коэффициентов, каждый из которых отображает тот или иной фактор или характеристику здания.

Q=1,2*100*S*К1*К2*К3*К4*К5*К6*К7

Теперь разберем составляющие этой формулы по отдельности. Q – конечный результат вычислений, необходимая мощность отопительной системы. В данном случае представлен в ваттах, при желании вы можете перевести его в КВт*ч. Как рассчитать объем воды в системе отопления, Вы можете прочитать в нашей статье.

А 1,2 – это коэффициент резерва по мощности. Желательно учитывать его в ходе расчетов – тогда вы точно можете быть уверены в том, что нагревательный котел обеспечит вам комфортную температуру в доме даже в самые сильные морозы за окном.

Отопительный котел должен обеспечивать комфортную температуру вне зависимости от погоды за окном

Цифру 100 вы могли видеть ранее – это количество ватт, необходимых для обогрева одного квадратного метра жилой комнаты. Если речь идет о нежилом помещении, кладовке и т. д. – его можно изменить в меньшую сторону. Также данная цифра нередко корректируется, исходя из личных предпочтений хозяина дома – кому-то комфортно в «натопленной» и очень теплой комнате, кому-то больше по душе прохлада поэтому печь с водяным контуром для отопления дома, возможно подойдет вам.

Гидравлический расчёт водоснабжения

Безусловно, “картина” расчета тепла на отопление не может быть полноценной без вычисления таких характеристик, как объём и скорость теплоносителя. В большинстве случаев теплоносителем выступает обычная вода в жидком или газообразном агрегатном состоянии.

Система трубопроводов

Реальный объём теплоносителя рекомендуется рассчитывать через суммирование всех полостей в системе отопления. При использовании одноконтурного котла – это оптимальный вариант. При применении двухконтурных котлов в системе отопления необходимо учитывать расходы горячей воды для гигиенических и иных бытовых целей

Расчет объема воды, подогреваемой двухконтурным котлом для обеспечения жильцов горячей водой и нагрева теплоносителя, производится путем суммирования внутреннего объема отопительного контура и реальных потребностей пользователей в нагретой воде.

W=k*P, где

  • W – объём носителя тепла;
  • P – мощность котла отопления;
  • k – коэффициент мощности (количество литров на единицу мощности, равен 13.5, диапазон – 10-15 л).

W = 13.5*P

Скорость теплоносителя – заключительная динамическая оценка системы отопления, которая характеризует скорость циркуляции жидкости в системе.

Гидравлический расчет системы отопления  расчет по площади

V=(0.86*P*μ)/∆T, где

  • P – мощность котла;
  • μ – КПД котла;
  • ∆T – разница температур между подаваемой водой и водой обратном контуре.

Используя вышеизложенные способы гидравлического расчёта, удастся получить реальные параметры, которые являются “фундаментом” будущей системы отопления.

Экономичность теплового комфорта в доме обеспечивают расчет гидравлики, её качественный монтаж и правильная эксплуатация.

Главные компоненты отопительной системы — источник тепла (котёл), тепловая магистраль (трубы) и приборы теплоотдачи (радиаторы).

https://www.youtube.com/watch?v=0N2PpGgqh4A

Для эффективного теплоснабжения необходимо сохранить первоначальные параметры системы при любых нагрузках независимо от времени года.

Сбор и обработку информации по объекту с целью:

  • определения количества требуемого тепла;
  • выбора схемы отопления.

Тепловой расчёт системы отопления с обоснованием:

  • объёмов тепловой энергии;
  • нагрузок;
  • теплопотерь.

Формула расхода теплоносителя

Если водяное отопление признаётся оптимальным вариантом, выполняется гидравлический расчёт.

Для расчёта гидравлики с помощью программ требуется знакомство с теорией и законами сопротивления. Если приведенные ниже формулы покажутся вам сложными для понимания, можно выбрать параметры, которые мы предлагаем в каждой из программ.

Это третий этап в процессе создания тепловой сети. Он представляет собой систему вычислений, позволяющих определить:

  • диаметр и пропускную способность труб;
  • местные потери давления на участках;
  • требования гидравлической увязки;
  • общесистемные потери давления;
  • оптимальный расход воды.

Согласно полученным данным осуществляют подбор насосов.

Для сезонного жилья, при отсутствии в нём электричества, подойдёт система отопления с естественной циркуляцией теплоносителя (ссылка на обзор).

Основная цель гидравлического расчёта — обеспечить совпадение расчётных расходов по элементам цепи с фактическими (эксплуатационными) расходами.

Количество теплоносителя, поступающего в радиаторы, должно создать тепловой баланс внутри дома с учётом наружных температур и тех, что заданы пользователем для каждого помещения согласно его функциональному назначению (подвал 5, спальня 18 и т.д.).

Теплопотери для расчета системы отопления частного дома

Комплексные задачи — минимизация расходов:

  1. капитальных – монтаж труб оптимального диаметра и качества;

эксплуатационных:

  • зависимость энергозатрат от гидравлического сопротивления системы;
  • стабильность и надёжность;
  • бесшумность.

https://www.youtube.com/watch?v=eJ1zMLi7bWM

Замена централизованного режима теплоснабжения индивидуальным упрощает методику вычислений

Для автономного режима применимы 4 метода гидравлического расчёта системы отопления:

  1. по удельным потерям (стандартный расчёт диаметра труб);
  2. по длинам, приведённым к одному эквиваленту;
  3. по характеристикам проводимости и сопротивления;
  4. сопоставление динамических давлений.
Читать далее:  Расширительный бак для водоснабжения: выбор, установка пошагово

Два первых метода используются при неизменном перепаде температуры в сети.

Два последних помогут распределить горячую воду по кольцам системы, если перепад температуры в сети перестанет соответствовать перепаду в стояках/ответвлениях.

1а. Оптимальная разница между горячим (tг) и охлаждённым( tо) теплоносителем для двухтрубной системы – 20º

1б. Расход теплоносителя G, кг/час — для однотрубной системы.

2. Оптимальная скорость движения теплоносителя – ν 0,3-0,7 м/с.

Гидравлический расчет системы отопления  расчет по площади

Чем меньше внутренний диаметр труб — тем выше скорость. Достигая отметки 0,6 м/с, движение воды начинает сопровождаться шумом в системе.

3. Расчётная скорость теплопотока – Q, Вт.

Формула для расчёта скорости теплопотока

4. Расчетная плотность воды: ρ = 971,8 кг/м3 при tср = 80 °С

1 — 2 1.78 1
2 — 3 2.60 1
3 — 4 2.80 2
4 — 5 2.80 2
5 — 6 2.80 4
6 — 7 2.80
7 — 8 2.20
8 — 9 6.10 1
9 — 10 0.5 1
10 — 11 0.5 1
11 — 12 0.2 1
12 — 13 0.1 1
13 — 14 0.3 1
14 — 15 1.00 1

Для определения внутреннего диаметра по каждому участку удобно пользоваться таблицей.

Ø 8Ø 10Ø 12Ø 15Ø 20Ø 25Ø 50

ν Q G v Q G v Q G v Q G v Q G v Q G v Q G
0.3 1226 53 0.3 1916 82 0.3 2759 119 0.3 4311 185 0.3 7664 330 0.3 11975 515 0.3 47901 2060
0.4 1635 70 0.4 2555 110 0.4 3679 158 0.4 5748 247 0.4 10219 439 0.4 15967 687 0.4 63968 2746
0.5 2044 88 0.5 3193 137 0.5 4598 198 0.5 7185 309 0.5 12774 549 0.5 19959 858 0.5 79835 3433
0.6 2453 105 0.6 3832 165 0.6 5518 237 0.6 8622 371 0.6 15328 659 0.6 23950 1030 0.6 95802 4120
0.7 2861 123 0.7 4471 192 0.7 6438 277 0.7 10059 433 0.7 17883 769 0.7 27942 1207 0.7 111768 4806

Пример

Задача: подобрать диаметр трубы для отопления гостиной площадью 18 м², высота потолка 2,7 м.

Данные проекта:

  • двухтрубная схема разводки;
  • циркуляция — принудительная (насос).

Среднестатистические данные:

  • расход мощности – 1 кВт на 30 м³
  • запас тепловой мощности – 20%

Расчёт:

  • объём помещения: 18 * 2,7 = 48,6 м³
  • расход мощности: 48,6 / 30 = 1,62 кВт
  • запас на случай морозов: 1,62 * 20% = 0,324 кВт
  • итоговая мощность: 1,62 0,324 = 1,944 кВт

Чтобы определиться с материалом труб, необходимо сравнить показатели их гидравлического сопротивления на всех участках отопительной системы.

Трубы для отопления

в самой трубе:

  • шероховатость;
  • место сужения/расширения диаметра;
  • поворот;
  • протяжённость.

в соединениях:

  • тройник;
  • шаровой кран;
  • приборы балансировки.

Расчетным участком является труба постоянного диаметра с неизменным расходом воды, соответствующим проектному тепловому балансу помещения.

Гидравлический расчет системы отопления  расчет по площади

Для определения потерь берутся данные с учётом сопротивления в регулирующей арматуре:

  1. длина трубы на расчётном участке/l,м;
  2. диаметр трубы расчётного участка/d,мм;
  3. принятая скорость теплоносителя/u, м/с;
  4. данные регулирующей арматуры от производителя;

справочные данные:

  • коэффициент трения/λ;
  • потери на трение/∆Рl, Па;
  • расчетная плотность жидкости/ρ = 971,8 кг/м3;

технические характеристики изделия:

  • эквивалентная шероховатость трубы/kэ мм;
  • толщина стенки трубы/dн×δ, мм.

Для материалов со сходными значениями kэ производители предоставляют значение удельных потерь давления R, Па/м по всему сортаменту труб.

Чтобы самостоятельно определить удельные потери на трение/R, Па/м, достаточно знать наружный d трубы, толщину стенки/dн×δ, мм и скорость подачи воды/W, м/с (или расход воды/G, кг/ч).

Гидравлический расчет системы отопления  расчет по площади

Для балансировки перепадов давления понадобится запорная и регулирующая арматура.

Исходные данные:

  • проектная нагрузка (массовый расход теплоносителя — воды или низкозамерзающей жидкости для систем отопления);
  • данные производителей труб по удельному динамическому сопротивлению/А, Па/(кг/ч)²;
  • технические характеристики арматуры.
  • количество местных сопротивлений на участке.

Задача: выровнять гидравлические потери в сети.

В гидравлическом расчёте для каждого клапана задаются установочные характеристики (крепление, перепад давления, пропускная способность).  По характеристикам сопротивления определяют коэффициенты затекания в каждый стояк и далее — в каждый прибор.

Выберем для вычислений метод характеристик сопротивления S,Па/(кг/ч)².

Потери давления/∆P, Па прямо пропорциональны квадрату расхода воды по участку/G, кг/ч:В физическом смысле S — это потери давления на 1 кг/ч теплоносителя:

  • ξпр — приведенный коэффициент для местных сопротивлений участка;
  • А — динамическое удельное давление, Па/(кг/ч)².

Удельным считается динамическое давление, возникающее при массовом расходе 1 кг/ч теплоносителя в трубе заданного диаметра (информация предоставляется производителем).

Σξ — слагаемое коэффициентов по местным сопротивлениям в участке.

С величиной:

  • которая соответствует коэффициенту местного сопротивления с учётом потерь от гидравлического трения.

Гидравлический расчет системы отопления  расчет по площади

Гидравлическое сопротивление в главном циркуляционном кольце представлено суммой потерь его элементов:

  • первичного контура/ΔPIк ;
  • местных систем/ΔPм;
  • теплогенератора/ΔPтг;
  • теплообменника/ΔPто.

Можно воспользоваться онлайн-расчётом в Excel Online, CombiMix 1.0, или онлайн-калькулятором гидравлического расчёта. Стационарную программу подбирают с учётом требований проекта.

Главная трудность в работе с такими программами — незнание основ гидравлики. В некоторых из них отсутствуют расшифровки формул, не рассматриваются особенности разветвления трубопроводов  и вычисления сопротивлений в сложных цепях.

Особенности программ:

  • HERZ C.O. 3.5 – производит расчёт по методу удельных линейных потерь давления.
  • DanfossCO и OvertopCO – умеют считать системы с естественной циркуляцией.
  • «Поток» (Potok) — позволяет применять метод расчёта с переменным (скользящим) перепадом температур по стоякам.

Следует уточнять параметры ввода данных по температуре — по Кельвину/по Цельсию.

Нормы температурных режимов помещений

Перед проведение любых расчётов параметров системы необходимо, как минимум, знать порядок ожидаемых результатов, а также иметь в наличии стандартизированные характеристики некоторых табличных величин, которые необходимо подставлять в формулы или ориентироваться на них.

Выполнив вычисления параметров с такими константами, можно быть уверенным в достоверности искомого динамического или постоянного параметра системы.

Температура помещения

Для помещений разнообразного назначения существуют эталонные стандарты температурных режимов жилых и нежилых помещений. Эти нормы закреплены в так называемых ГОСТах

Для системы отопления одним из таких глобальных параметров является температура помещения, которая должна быть постоянной в независимости от периода года и условий окружающей среды.

Согласно регламенту санитарных нормативов и правил есть различия в температуре относительно летнего и зимнего периода года. За температурный режим помещения в летний сезон отвечает система кондиционирования, принцип ее расчета подробно изложен в этой статье.

А вот комнатная температура воздуха в зимний период обеспечивается системой отопления. Поэтому нам интересны диапазоны температур и их допуски отклонений для зимнего сезона.

В большинстве нормативных документов оговариваются следующие диапазоны температур, которые позволяют человеку комфортно находиться в комнате.

Гидравлический расчет системы отопления  расчет по площади

Для нежилых помещений офисного типа площадью до 100 м2:

  • 22-24°С – оптимальная температура воздуха;
  • 1°С – допустимое колебание.

Для помещений офисного типа площадью более 100 м2 температура составляет 21-23°С. Для нежилых помещений промышленного типа диапазоны температур сильно отличаются в зависимости от предназначения помещения и установленных норм охраны труда.

Комфортная температура

Комфортная температура помещения у каждого человека “своя”. Кто-то любит чтобы было очень тепло в комнате, кому-то комфортно когда в комнате прохладно – это всё достаточно индивидуально

Что же касаемо жилых помещений: квартир, частных домов, усадеб и т. д. существуют определённые диапазоны температуры, которые могут корректироваться в зависимости от пожеланий жильцов.

И всё же для конкретных помещений квартиры и дома имеем:

  • 20-22°С – жилая, в том числе детская, комната, допуск ±2°С –
  • 19-21°С – кухня, туалет, допуск ±2°С;
  • 24-26°С – ванная, душевая, бассейн, допуск ±1°С;
  • 16-18°С – коридоры, прихожие, лестничные клетки, кладовые, допуск 3°С

Важно отметить, что есть ещё несколько основных параметров, которые влияют на температуру в помещении и на которые нужно ориентироваться при расчёте системы отопления: влажность (40-60%), концентрация кислорода и углекислого газа в воздухе (250:1), скорость перемещения воздушных масс (0.13-0.25 м/с) и т. п.

Теплопотери частного дома

Сегодня вы найдете множество источников отопления, начиная от газового, электронагревательных приборов, инфракрасных и микатермических обогревателей, масляных радиаторов и теплых полов, заканчивая каминами или печками. Иногда встречаются даже системы воздушного отопления.

Каким бы не был тип вашего отопления, существуют общепринятые нормы расчета удельной мощности котла, которые напрямую зависят от типа климатической зоны, в которой он используется:

  • Удельная мощность (W) = 1500-2000 Вт — для северных районов;
  • Удельная мощность (W) = 1200-1500 Вт — для центральных районов;
  • Удельная мощность (W) = 700-900 Вт — для южных районов.

Чтобы рассчитать удельную мощность котла, необходимую для успешного обеспечения обогрева помещения, используется формула — Удельная мощность (W) = (S*W)/10, где:

  • S — показатель суммарной площади отапливаемого помещения;
  • W — максимальная мощность котла с расчета на 10 м3, которая указывается с учетом погодных особенностей региона.

Здание теряет тепло из-за разности температур воздуха внутри и вне дома. Теплопотери тем выше, чем более значительна площадь ограждающих конструкций здания (окон, кровли, стен, фундамента).

Также потери тепловой энергии связаны с материалами ограждающих конструкций и их размерами. К примеру, теплопотери тонких стен больше, чем толстых.

Эффективный расчет отопления для частного дома обязательно учитывает материалы, использованные при постройке ограждающих конструкций.

Например, при равной толщине стены из дерева и кирпича проводят тепло с разной интенсивностью – теплопотери через деревянные конструкции идут медленнее. Одни материалы пропускают тепло лучше (металл, кирпич, бетон), другие хуже (дерево, минвата, пенополистирол).

Гидравлический расчет системы отопления  расчет по площади

Атмосфера внутри жилой постройки косвенно связана с внешней воздушной средой. Стены, проемы окон и дверей, крыша и фундамент зимой передают тепло из дома наружу, поставляя взамен холод. На них приходится 70-90% от общих теплопотерь коттеджа.

Теплопотери для расчета системы отопления частного дома

Стены, крыша, окна и двери – все пропускает тепло зимой наружу. Тепловизор наглядно покажет утечки тепла

Постоянная утечка тепловой энергии за отопительный сезон происходит также через вентиляцию и канализацию.

При расчете теплопотерь постройки ИЖС эти данные обычно не учитывают. Но включение в общий тепловой расчет дома потерь тепла через канализационную и вентиляционную системы – решение все же правильное.

Теплопотери загородного дома

Существенно снизить утечки тепла, проходящие через строительные конструкции, дверные/оконные проемы сможет грамотно устроенная система теплоизоляции

Выполнить расчёт автономного контура отопления загородного дома без оценки теплопотерь его ограждающих конструкций невозможно. Точнее, не получится определить мощность отопительного котла, достаточную для обогрева коттеджа в самые лютые заморозки.

Анализ реального расхода тепловой энергии через стены позволит сравнить затраты на котловое оборудование и топливо с расходами на теплоизоляцию ограждающих конструкций.

Ведь чем более энергоэффективен дом, т.е. чем меньше тепловой энергии он теряет в зимние месяцы, тем меньше расходы на приобретение топлива.

Для грамотного расчета системы отопления потребуется коэффициент теплопроводности распространенных строительных материалов.

Теплопроводность конструкционных материалов

Таблица значений коэффициента теплопроводности различных строительных материалов, наиболее часто применяемых при возведен

Гидравлический расчет системы отопления  расчет по площади

На примере условного двухэтажного коттеджа рассчитаем теплопотери через его стеновые конструкции.

Исходные данные:

  • квадратная «коробка» с фасадными стенами шириной 12 м и высотой 7 м;
  • в стенах 16 проемов, площадь каждого 2,5 м2;
  • материал фасадных стен – полнотелый кирпич керамический;
  • толщина стены – 2 кирпича.
Читать далее:  Воздушное отопление загородного дома система для коттеджа

Далее проведем вычисление группы показателей, из которых и складывается общее значение потерь тепла через стены.

Расчёт теплопотерь в доме

Согласно второму началу термодинамики (школьная физика) не существует самопроизвольной передачи энергии от менее нагретых к более нагретым мини- или макрообъектам. Частным случаем этого закона является “стремление” создания температурного равновесия между двумя термодинамическими системами.

Например, первая система – окружающая среда с температурой -20°С, вторая система – здание с внутренней температурой 20°С. Согласно приведённого закона эти две системы будут стремиться уравновеситься посредством обмена энергии. Это будет происходить с помощью тепловых потерь от второй системы и охлаждения в первой.

Карта температур

Однозначно можно сказать, что температура окружающей среды зависит от широты на которой расположен частный дом. А разница температур влияет на количество утечек тепла от здания ( )

Под теплопотерями подразумевают непроизвольный выход тепла (энергии) от некоторого объекта (дома, квартиры). Для обычной квартиры этот процесс не так “заметен” в сравнении с частным домом, поскольку квартира находиться внутри здания и “соседствует” с другими квартирами.

В частном доме через внешние стены, пол, крышу, окна и двери в той или иной степени “уходит” тепло.

Зная величину теплопотерь для самых неблагоприятных погодных условий и характеристику этих условий, можно с высокой точностью вычислить мощность системы отопления.

Q=Qпол Qстена Qокно Qкрыша Qдверь … Qi, где

Qi – объём теплопотерь от однородного вида оболочки здания.

Q=S*∆T/R, где

  • Q – тепловые утечки, В;
  • S – площадь конкретного типа конструкции, кв. м;
  • ∆T – разница температур воздуха окружающей среды и внутри помещения, °C;
  • R – тепловое сопротивление определённого типа конструкции, м2*°C/Вт.

Саму величину теплового сопротивления для реально существующих материалов рекомендуется брать из вспомогательных таблиц.

R=d/k, где

  • R – тепловое сопротивление, (м2*К)/Вт;
  • k – коэффициент теплопроводности материала, Вт/(м2*К);
  • d – толщина этого материала, м.

В старых домах с отсыревшей кровельной конструкцией утечки тепла происходят через верхнюю часть постройки, а именно через крышу и чердак. Проведение мероприятий по утеплению потолка или теплоизоляции мансардной крыши решают эту проблему.

Дом через тепловизор

Если утеплить чердачное пространство и крышу, то общие потери тепла от дома можно значительно уменьшить

В доме существуют ещё несколько видов тепловых потерь через щели в конструкциях, систему вентиляции, кухонную вытяжку, открывания окон и дверей. Но учитывать их объём не имеет смысла, поскольку они составляют не более 5% от общего числа основных утечек тепла.

Недостатки двухтрубной системы

Стандартными компонентами обеспечения тепла в помещении являются радиаторы, панели, системы “тёплый” пол, конвекторы и т. д. Самыми распространёнными деталями отопительной системы есть радиаторы.

Тепловой радиатор – это специальная полая конструкция модульного типа из сплава с высокой теплоотдачей. Он изготавливается из стали, алюминия, чугуна, керамика и других сплавов. Принцип действия радиатора отопления сводится к излучению энергии от теплоносителя в пространство помещения через “лепестки”.

Многосекционный радиатор отопления

Алюминиевый и биметаллический радиатор отопления пришёл на смену массивным чугунным батареям. Простота производства, высокая теплоотдача, удачная конструкция и дизайн сделали это изделие популярным и распространённым инструментом излучения тепла в помещении

Существует несколько методик расчёта радиаторов отопления в комнате. Нижеприведённый перечень способов отсортирован в порядке увеличения точности вычислений.

Гидравлический расчет системы отопления  расчет по площади

Варианты вычислений:

  1. По площади. N=(S*100)/C, где N – количество секций, S – площадь помещения (м2), C – теплоотдача одной секции радиатора (Вт, берётся из тех паспорта или сертификата на изделие), 100 Вт – количество теплового потока, которое необходимо для нагрева 1 м2 (эмпирическая величина). Возникает вопрос: а каким образом учесть высоту потолка комнаты?
  2. По объёму. N=(S*H*41)/C, где N, S, C – аналогично. Н – высота помещения, 41 Вт – количество теплового потока, которое необходимо для нагрева 1 м3 (эмпирическая величина).
  3. По коэффициентам. N=(100*S*к1*к2*к3*к4*к5*к6*к7)/C, где N, S, C и 100 – аналогично. к1 – учёт количества камер в стеклопакете окна комнаты, к2 – теплоизоляция стен, к3 – соотношение площади окон к площади помещения, к4 – средняя минусовая температура в наиболее холодную неделю зимы, к5 – количество наружных стен комнаты (которые “выходят” на улицу), к6 – тип помещения сверху, к7 – высота потолка.

Это максимально точный вариант расчёта количества секций. Естественно, что округление дробных результатов вычислений производится всегда к следующему целому числу.

W=k*P, где

W = 13.5*P

Для того, чтобы выдержать вышеуказанные условия, достаточно правильно подобрать диаметры труб. Это можно сделать по таблице.

Труба Минимальная мощность, кВт Максимальная мощность, кВт
Металлопластиковая труба 16 мм 2,8 4,5
Металлопластиковая труба 20 мм 5 8
Металлопластиковая труба 26 мм 8 13
Металлопластиковая труба 32 мм 13 21
Полипропиленовая труба 20 мм 4 7
Полипропиленовая труба 25 мм 6 11
Полипропиленовая труба 32 мм 10 18
Полипропиленовая труба 40 мм 16 28

В ней указана суммарная мощность радиаторов, которые труба обеспечивает теплом.

Рассчитать параметры отопления дома необходимо в несколько этапов:

  • расчет теплопотерь дома;
  • подбор температурного режима;
  • подбор отопительных радиаторов по мощности;
  • гидравлический расчет системы;
  • выбор котла.

Таблица поможет вам понять, какой мощности радиатор нужен для вашего помещения.

Расчет теплопотерь

Теплотехническая часть расчета выполняется на базе следующих исходных данных:

  • удельная теплопроводность всех материалов, используемых при строительстве частного дома;
  • геометрические размеры всех элементов здания.

Тепловая нагрузка на отопительную систему в данном случае определяется по формуле:Мк = 1,2 х Тп, где

Гидравлический расчет системы отопления  расчет по площади

Тп — суммарные теплопотери постройки;

Мк — мощность котла;

1,2 — коэффициент запаса (20%).

При индивидуальной застройке расчет отопления можно произвести по упрощенной методике: суммарную площадь помещений (включая коридоры и прочие нежилые помещения) умножить на удельную климатическую мощность, и полученное произведение разделить на 10.

Значение удельной климатической мощности зависит от места строительства и равняется:

  • для центральных районов России — 1,2 — 1,5 кВт;
  • для юга страны — 0,7 — 0,9 кВт;
  • для севера — 1,5 — 2,0 кВт.

Упрощенная методика позволяет рассчитать отопление, не прибегая к дорогостоящей помощи проектных организаций.

Режим определяется исходя из температуры теплоносителя (чаще всего им является вода) на выходе из отопительного котла, воды, возвращенной в котел, а также температуры воздуха внутри помещений.

Оптимальным режимом, согласно европейским нормам, является соотношение 75/65/20.

Для подбора отопительных радиаторов до их монтажа следует предварительно рассчитать объем каждого помещения. Для каждого региона нашей страны установлено необходимое количество тепловой энергии на один кубометр помещения. Например, для европейской части страны этот показатель равен 40 Вт.

Для определения количества тепла для конкретного помещения, надо ее удельную величину умножить на кубатуру и полученный результат увеличить на 20% (умножить на 1,2). На основании полученной цифры рассчитывается необходимое количество отопительных приборов. Производитель указывает их мощность.

К примеру, каждое ребро стандартного алюминиевого радиатора имеет мощность 150 Вт (при температуре теплоносителя 70°С). Чтобы определить нужное количество радиаторов, надо величину необходимой тепловой энергии разделить на мощность одного отопительного элемента.

Для гидравлического расчета существуют специальные программы.

Одним из затратных этапов строительства является монтаж трубопровода. Гидравлический расчет системы отопления частного дома нужен для определения диаметров труб, объема расширительного бака и правильного подбора циркуляционного насоса. Результатом гидравлического расчета являются следующие параметры:

  • Расход теплоносителя в целом;
  • Потери напора теплового носителя в системе;
  • Потери напора от насоса (котла) до каждого отопительного прибора.

Как определить расход теплоносителя? Для этого необходимо перемножить его удельную теплоемкость (для воды этот показатель равен 4,19 кДж/кг*град.С) и разность температур на выходе и входе, затем суммарную мощность системы отопления разделить на полученный результат.

Диаметр трубы подбирается исходя из следующего условия: скорость воды в трубопроводе не должна превышать 1,5 м/с. В противном случае система будет шуметь. Но есть и ограничение нижнего предела скорости — 0,25 м/с. Монтаж трубопровода требует оценки данных параметров.

Если этим условием пренебречь, то может произойти завоздушивание труб. При правильно подобранных сечениях для функционирования системы отопления бывает достаточно циркуляционного насоса, встроенного в котел.

Потери напора для каждого участка рассчитываются как произведение удельной потери на трение (указывается производителем труб) и длины участка трубопровода. В заводских характеристиках они также указываются для каждого фитинга.

Котел выбирается в зависимости от степени доступности того или иного вида топлива. Если к дому подведен газ, нет смысла приобретать твердотопливный или электрический. Если нужна организация горячего водоснабжения, то котел выбирают не по мощности отопления: в таких случаях выбирают монтаж двухконтурных устройств мощностью не менее 23 кВт. При меньшей производительности они обеспечат лишь одну точку водоразбора.

Но человек не останавливается на достигнутом рубеже.

Формула скорости теплоносителя

Если в вашем доме смонтирована система индивидуального отопления, то вы можете наблюдать такую ситуацию, при которой в дальних комнатах температура ниже, чем в ближайших от котла комнатах.

Обратите внимание

В чем причина? А причина скрыта в том, что монтажники (чтобы не морочить себе голову) выполняют монтаж теплопровода в вашем доме везде трубой одного диаметра.

В тупиковых дух трубных системах отопления движение горячей воды в подающей магистрали противоположно движению остывшей воды в обратной магистрали.

В этой схеме длина циркуляционных колец неодинакова, чем дальше от котла расположен нагревательный прибор, тем больше протяженность циркуляционного кольца, и наоборот, чем ближе отопительный прибор расположен к главному стояку, тем меньше протяженность циркуляционного кольца.

При этом нарушается тепловой баланс. Поэтому в последней комнате у вас температура будет ниже, чем в первой. Особенно это ощутимо в морозные ночи. Конечно, как-то сбалансировать обогрев можно, если открыть все внутренние двери, но ведь это не всегда возможно. Обычно закрыты двери в детскую комнату, в комнату, где старшие дети выполняют домашнее задание и т.д.

Какие же пути решения этой проблемы

Многие специалисты советуют регулировать температуру в отдельных комнатах с помощью обратных вентилей или кранов .

Да, это дает шанс, но настроить может только специалист , и настройка продержится до ближайшего изменения температуры на улице.Есть ли другие варианты соблюдения теплового баланса?Да, такие варианты существуют.

Вот один из них – двухтрубная отопительная система,с разностью диаметров .

В чем смысл этого предложения? Смысл очень простой, но, в тоже время, потребует несколько иного отношения к монтажу.

Если у вас установлен отопительный котел с выходным диаметром 32 мм, то трубная разводка выстраивается следующим образом.

  • До первого тройника вы монтируете трубу диаметром 32 мм.
  • От первого тройника на радиатор отходит труба 16 мм, т.е. минимального диаметра.
  • От первого тройника до второго монтируется труба диаметром 25 мм.

Важно

Со второго тройника на радиатор уходит труба опять же диаметром 16 мм.

Между вторым и третьим радиатором монтируется труба диаметром 20 мм, и на радиатор отходит труба 16 мм.

Формула потери напора на местных сопротивлениях

Такая система автоматически соблюдает регулировку обогрева разных комнат или помещений.

Как вы заметили – везде на радиаторы отходит труба диаметром 16 мм. А как поступить, если радиаторов больше?

В таком случае выходную трубу с диаметром 32 мм разделяем на два плеча диаметром по 25 мм, далее на два плеча, а от них на два радиатора. Дальше идет два плеча диаметром 20 мм. Если этого недостаточно, то можно завершить разводку двумя плечами диаметром 16 мм. При этом количество радиаторов увеличится до восьми.

  1. Диаметр будущего трубопровода.
  2. Размеры и необходимую мощность отопительных приборов.
  3. Предварительную и конечную настройку термостатических клапанов и вентилей.
  4. Настройки регуляторов контроля давления.

Заключение

Определение стоимости отопления

Для поддержки разницы температур между окружающей средой и температурой внутри дома необходима автономная система отопления, которая поддерживает нужную температуру в каждой комнате частного дома.

Базисом системы отопления выступают разные виды котлов: жидко- или твердотопливные, электрические или газовые.

Котел – это центральный узел системы отопления, который генерирует тепло. Основной характеристикой котла есть его мощность, а именно скорость преобразования количество теплоты за единицу времени.

Произведя расчеты тепловой нагрузки на отопление получим требуемую номинальную мощность котла.

Ркотла=(Sпомещения*Рудельная)/10, где

  • Sпомещения– общая площадь отапливаемого помещения;
  • Руделльная– удельная мощность относительно климатических условий.

Но эта формула не учитывает тепловые потери, которых достаточно в частном доме.

Ркотла=(Qпотерь*S)/100, где

  • Ркотла– мощность котла;
  • Qпотерь– потери тепла;
  • S – отапливаемая площадь.

Расчетную мощность котла необходимо увеличить. Запас необходим, если планируется использование котла для подогрева воды для ванной комнаты и кухни.

В большинстве систем отопления частных домов рекомендуется обязательно использовать расширительный резервуар, в котором будет храниться запас теплоносителя. Каждый частный дом нуждается в горячем водоснабжении

Ркотла=(Qпотерь*S*К)/100, где

Читать далее:  Посудомоечные машины Candy: купить в интернет-магазине «BT-Technika»

К – будет равен 1.25,  то есть расчётная мощность котла будет увеличена на 25%.

Таким образом, мощность котла предоставляет возможность поддерживать нормативную температуру воздуха в комнатах здания, а также иметь начальный и дополнительный объём горячей воды в доме.

Расчет стоимости тепловой энергии зависит от того, какой источник тепла выбран домовладельцем. Если предпочтение отдано газовому котлу и дом газифицирован, то в общую сумму войдут цена отопительного устройства (примерно 1300 евро) и затраты на его подключение к газопроводу (около 1000 евро).

Далее следует добавить затраты на электроэнергию. Несмотря на то, что основным видом топлива в этом случае является газ, без электричества все равно не обойтись. Оно необходимо для обеспечения работы циркуляционного насоса и элементов автоматики. В среднем котел потребляет 100 Вт в период отопительного сезона и 20 Вт в теплое время года (на обеспечение горячего вдоснабжения).

Одним из наиболее быстрых и простых для понимания способов определения мощности отопительной системы является расчет по площади помещения. Подобный метод широко применяется продавцами нагревательных котлов и радиаторов. Расчет мощности системы отопления по площади происходит в несколько простых шагов.

Шаг 1. По плану или уже возведенному зданию определяется внутренняя площадь постройки в квадратных метрах.

Шаг 2. Полученная цифра умножается на 100-150 – именно столько ватт от общей мощности отопительной системы нужно на каждый м2 жилья.

Шаг 3. Затем результат умножается на 1,2 или 1,25 – это необходимо для создания запаса мощности, чтобы отопительная система была способна поддерживать комфортную температуру в доме даже в случае самых сильных морозов.

Шаг 4. Вычисляется и записывается конечная цифра – мощность системы отопления в ваттах, необходимая для обогрева того или иного жилья. В качестве примера – для поддержания комфортной температуры в частном доме площадью 120 м2 потребуется примерно 15 000 Вт.

Шаг 5. По уже определенным расчетным данным подбирается конкретная модель нагревательного котла и радиаторов.

Расчет площади коттеджа по его плану. Также здесь отмечены магистрали отопительной системы и места установки радиаторов

Таблица расчета мощности радиаторов по площади помещения

Следует понимать, что единственным преимуществом подобного способа теплового расчета отопительной системы является скорость и простота. При этом метод обладает множеством недостатков.

  1. Отсутствие учета климата в той местности, где возводиться жилье – для Краснодара система отопления с мощностью 100 Вт на каждый квадратный метр будет явно избыточной. А для Крайнего Севера она может оказаться недостаточной.
  2. Отсутствие учета высоты помещений, типа стен и полов, из которых они возведены – все эти характеристики серьезно влияют на уровень возможных тепловых потерь и, следовательно, на необходимую мощность отопительной системы для дома.
  3. Сам способ расчета системы отопления по мощности изначально был разработан для больших производственных помещений и многоквартирных домов. Следовательно, для отдельного коттеджа он не является корректным.
  4. Отсутствие учета количества окон и дверей, выходящих на улицу, а ведь каждый из подобных объектов является своеобразным «мостиком холода».

Так имеет ли смысл применять расчет системы отопления по площади? Да, но только в качестве предварительных прикидок, позволяющих получить хоть какое-то представление о вопросе. Для достижения лучших и более точных результатов следует обратиться к более сложным методикам.

Представим следующий способ расчета мощности системы отопления – он также является довольно простым и понятным, но при этом отличается более высокой точностью конечного результата. В данном случае основой для вычислений становится не площадь помещения, а его объем. Кроме того, в расчете учитывается количество окон и дверей в здании, средний уровень морозов снаружи.

Представим небольшой пример применения подобного метода – имеется дом общей площадью 80 м2, комнаты в котором имеют высоту 3 м. Постройка располагается в Московской области. Всего есть 6 окон и 2 двери, выходящие наружу. Расчет мощности тепловой системы будет выглядеть так.                                                                                     «Как сделать автономное отопление в многоквартирном доме, Вы можете прочитать в нашей статье».

Шаг 1. Определяется объем здания. Это может быть сумма каждой отдельной комнаты либо общая цифра. В данном случае объем вычисляется так – 80*3=240 м3.

Шаг 2. Подсчитывается количество окон и количество дверей, выходящих на улицу. Возьмем данные из примера – 6 и 2 соответственно.

Шаг 3. Определяется коэффициент, зависящий от местности, в которой стоит дом и того, насколько там сильные морозы.

Таблица. Значения региональных коэффициентов для расчета мощности отопления по объему.

Тип зимы Значение коэффициента Регионы, для которых данный коэффициент применим
Теплая зима. Холода отсутствуют или очень слабы От 0,7 до 0,9 Краснодарский край, побережье Черного моря
Умеренная зима 1,2 Средняя полоса России, Северо-Запад
Суровая зима с достаточно сильными холодами 1,5 Сибирь
Экстремально холодная зима 2,0 Чукотка, Якутия, регионы Крайнего Севера

Так как в примере речь идет о доме, построенном в Московской области, то региональный коэффициент будет иметь значение 1,2.

Шаг 4. Для отдельно стоящих частных коттеджей определенное в первой операции значение объема здания умножается на 60. Делаем подсчет – 240*60=14 400.

Шаг 5. Затем результат вычисления предыдущего шага множится на региональный коэффициент: 14 400 * 1,2 = 17 280.

Шаг 6. Число окон в доме умножается на 100, число дверей, выходящих наружу – на 200. Результаты суммируются. Вычисления в примере выглядят следующим образом – 6*100 2*200 = 1000.

Шаг 7. Цифры, полученные по итогам пятого и шестого шагов, суммируются: 17 280 1000 = 18 280 Вт. Это и есть мощность отопительной системы, необходимая для поддержания оптимальной температуры в здании при условиях, указанных выше.

Стоит понимать, что расчет системы отопления по объему также не является абсолютно точным – в вычислениях не уделяется внимание материалу стен и пола здания и их теплоизоляционным свойствам. Также не делается поправка на естественную вентиляцию, свойственную любому дому.

Котел в составе системы отопления предназначен для компенсации теплопотерь здания. А также, в случае двухконтурной системы или при оснащении котла бойлером косвенного нагрева, для согревания воды на гигиенические нужды.

Вычислив суточные потери тепла и расход теплой воды «на канализацию», можно точно определить необходимую мощность котла для коттеджа определенной площади и характеристик ограждающих конструкций.

Отопительный котел

Одноконтурный котел производит только нагрев теплоносителя для отопительной системы

Для определения мощности котла отопления необходимо рассчитать затраты тепловой энергии дома через фасадные стены и на нагрев сменяемой воздушной атмосферы внутренних помещений.

271,512 45,76 = 317,272 кВт·ч,

Где: 271,512 – суточные потери тепла внешними стенами; 45,76 – суточные теплопотери на нагрев приточного воздуха.

317,272 : 24 (часа) = 13,22 кВт

Однако такой котел окажется под постоянно высокой нагрузкой, снижающей его срок службы. И в особенно морозные дни расчетной мощности котла будет недостаточно, поскольку при высоком перепаде температур между комнатной и уличной атмосферами резко возрастут теплопотери здания.

Поэтому выбирать котел по усредненному расчету затрат тепловой энергии не стоит – он с сильными морозами может и не справиться.

13,22 · 0,2 13,22 = 15,86 кВт

493,82 : 30 : 24 = 0,68 кВт

По итогам расчетов оптимальная мощность котла для коттеджа-примера равна 15,86 кВт для отопительного контура и 0,68 кВт для нагревательного контура.

Особенности и этапы проектирования системы отопления

К примеру, здания с большой площадью требуют принудительной циркуляции теплоносителя. Подобный эффект достигается за счет включения в систему специальных циркулярных насосов.

Такой насос работает беспрерывно, поэтому требует наличие определенных технических характеристик:

  1. Бесшумность работы.
  2. Надежность.
  3. Прочность.
  4. Долговечность.
  5. Простота эксплуатации.

Таблица: расход топлива

Когда рассматриваются узловые точки на стояках, отмечаются на схемах простыми арабскими цифрами, которые обозначают номер этажа в горизонтальных системах и номер приборного стояка при вертикальной системе. Цифры выделяются штрихом в местах сборки потока теплового носителя. Каждый расчетный участок, взятый по отдельности, обозначается двумя символами, которые обозначают его начало и конец.

Расчет можно проводить и по обратной схеме: сначала определить диаметры по кольцу, после чего перейти к замыкающим участкам. В таких измерениях коэффициент затекания находится по графику, составленному по результатам предыдущих исследований.

Выработка тепла ежегодно дорожает – растут цены на топливо. А тепла постоянно не хватает. Относиться безразлично к энергозатратам коттеджа нельзя – это совершенно невыгодно.

С одной стороны каждый новый сезон отопления обходится домовладельцу дороже и дороже. С другой стороны утепление стен, фундамента и кровли загородного стоит хороших денег. Однако чем меньше тепла уйдет из здания, тем дешевле будет его отапливать.

Сохранение тепла в помещениях дома – основная задача отопительной системы в зимние месяцы. Выбор мощности отопительного котла зависит от состояния дома и от качества утепления его ограждающих конструкций. Принцип «киловатт на 10 квадратов площади» работает в коттедже среднего состояния фасадов, кровли и фундамента.

Теплопотери в доме

Теперь перейдем непосредственно к корректирующим коэффициентам. К1 учитывает конструкцию окон, применяющихся в той или иной комнате. Чем больше значение – тем выше потери тепла. Для самого простого одинарного стекла К1 равен 1,27, для двойного и тройного стеклопакетов – 1 и 0,85 соответственно.

Виды стеклопакетов

К2 учитывает фактор потерь тепловой энергии через стены здания. Значение зависит от того, из какого материала они сложены, и обладают ли слоем теплоизоляции.

Некоторые из примеров данного коэффициента приведены в следующем списке:

  • кладка в два кирпича со слоем теплоизоляции 150 мм – 0,85;
  • пенобетон – 1;
  • кладка в два кирпича без теплоизоляции – 1,1;
  • кладка в полтора кирпича без теплоизоляции – 1,5;
  • стена бревенчатого сруба – 1,25;
  • стена из бетона без утепления – 1,5.

Затраты на утеплитель на этапе строительства дома окупят себя путем экономии на счетах за газ и воду

К3 показывает соотношение площади окон к площади помещения. Очевидно, что чем больше их – тем выше теплопотери, так как каждое окно является «мостиком холода», и полностью этот фактор нельзя устранить даже для самых качественных тройных стеклопакетов с прекрасным утеплением. Значения данного коэффициента приведены в таблице ниже.

Таблица. Корректирующий коэффициент соотношения площади окон к площади помещения.

Соотношение площади окон к площади пола в помещении Значение коэффициента К3
10% 0,8
20% 1,0
30% 1,2
40% 1,4
50% 1,5

По своей сути К4 похож на региональный коэффициент, который использовался в тепловом расчете системы отопления по объему жилья. Но в данном случае он привязан не к какой-то конкретной местности, а к среднему минимуму температуры в самый холодный месяц года (обычно для этого выбирается январь). Соответственно, чем этот коэффициент выше, тем больше энергии потребуется для отопительных нужд – прогреть помещение при -10°С намного проще, чем при -25°С.

Все значения К4 приведены ниже:

  • до -10°С – 0,7;
  • -10°С – 0,8;
  • -15°С – 0,9;
  • -20°С – 1,0;
  • -25°С – 1,1;
  • -30°С – 1,2;
  • -35°С – 1,3;
  • ниже -35°С – 1,5.

Это карта среднемесячных температур в России на январь

Следующий коэффициент К5 учитывает число стен в помещении, выходящих наружу. Если она одна – его значение равно 1, для двух – 1,2, для трех – 1,22, для четырех – 1,33.

Перейдем к двум последним корректирующим коэффициентам. К6 учитывает то, что находится над помещением – жилой и отапливаемый этаж (0,82), утепленный чердак (0,91) или холодный чердак (1).

К7 корректирует результаты расчета в зависимости от высоты комнаты:

  • для помещения высотой 2,5 м – 1;
  • 3 м – 1,05;
  • 5 м – 1,1;
  • 0 м – 1,15;
  • 5 м – 1,2.

Результатом применения формулы, изложенной выше, станет требуемая мощность отопительного котла для частного дома. А теперь приведем пример расчета по данному способу. Исходные условия следующие.

  1. Площадь помещения – 30 м2. Высота – 3 м.
  2. В качестве окон используются двойные стеклопакеты, их площадь относительно таковой у комнаты – 20%.
  3. Тип стены – кладка в два кирпича без слоя теплоизоляции.
  4. Средний минимум января для местности, где стоит дом, составляет -25°С.
  5. Помещение является угловым в коттедже, следовательно, наружу выходят две стены.
  6. Над комнатой – утепленный чердак.

Q=1,2*100*30*1*1,1*1*1,1*1,2*0,91*1,02=4852 Вт

Двухтрубная схема нижней разводки системы отопления

Программный продукт nanoCAD «Отопление» включает в себя специализированные инструменты инженера-проектировщика отопительных систем

После завершения расчетов, изложенных выше, необходимо определить, сколько радиаторов и с каким числом секций понадобится для каждого отдельного помещения. Для подсчета их количества есть простой способ.

Шаг 1. Определяется материал, из которого будут изготовлены батареи отопления в доме. Это может быть сталь, чугун, алюминий или биметаллический композит.

Шаг 2. Далее указываются места, где будут располагаться радиаторы. В большинстве помещений они находятся под окнами – там батарея создает воздушную тепловую завесу, мешающую холоду проникнуть внутрь.

Шаг 3. Подбираются модели радиаторов, подходящих владельцу частного дома по стоимости, материалу и некоторым другим характеристикам.

Шаг 4. На основании технической документации, ознакомиться с которой можно на сайте компании-производителя или продавца радиаторов, определяется, какую мощность выдает каждая отдельная секция батареи.

Шаг 5. Последний шаг – разделить мощность, требуемую на обогрев помещения, на мощность, вырабатываемую отдельной  секцией радиатора.

Мощность и теплоотдача радиаторов

На этом ознакомление с базовыми знаниями о тепловом расчете системы отопления и способах его осуществления можно считать законченным. Для получения большего объема информации желательно обратиться к специализированной литературе. Также будет не лишним ознакомиться с нормативными документами, такими как СНиП 41-01-2003.

Тепловой расчет системы отопления

Схема, иллюстрирующая систему отопления частного дома

Теплопотери в доме

Мероприятия по теплоизоляции, приведенные на изображении выше, помогут существенно уменьшить количество энергии и теплоносителя, необходимого для обогрева жилого дома

Расчет площади коттеджа по его плану. Также здесь отмечены магистрали отопительной системы и места установки радиаторов

Таблица расчета мощности радиаторов по площади помещения

Расчет мощности системы отопления по объему жилья

Отопительный котел должен обеспечивать комфортную температуру вне зависимости от погоды за окном

Виды стеклопакетов

Затраты на утеплитель на этапе строительства дома окупят себя путем экономии на счетах за газ и воду

Это карта среднемесячных температур в России на январь

Двухтрубная схема нижней разводки ситемы отопления

Программный продукт nanoCAD «Отопление» включает в себя специализированные инструменты инженера-проектировщика отопительных систем

Мощность и теплоотдача радиаторов

Но устройству такой схемы обязательно должен предшествовать расчет однотрубной системы отопления для повышения КПД.

Гидравлическая устойчивость системы традиционно обеспечивается оптимальным подбором условного прохода трубопроводов (Dусл). Устойчивую схему реализовать способом подбора диаметров, без предварительной настройки систем отопления с терморегуляторами, достаточно просто.

Именно к таким отопительным системам прямое отношение имеет однотрубная схема с вертикальным/горизонтальным монтажом радиаторов и при полном отсутствии запорно-регулирующей арматуры на стояках (ответвлениях к приборам).

Наглядный пример установки радиаторного элемента в схеме, организованной по принципу циркуляции одной трубой.

Совет

В данном случае используются металлопластиковые трубопроводы с металлическими фитингами.

Методом изменения диаметров труб в однотрубной кольцевой схеме отопления можно достаточно точно сбалансировать имеющие место потери давления.

Управление же потоками теплоносителя внутри каждого отдельного нагревательного прибора обеспечивает установка терморегулятора.

  • Правильный выбор диаметра труб на тех участках трубопроводов, где его величина постоянна;
  • Определение действующего давления в магистрали;
  • Правильный выбор всех узлов системы.
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
ManRem
Adblock
detector